
A Cheap SDR Loran-C frequency receiver

(Formatted Sun Nov 9 00:00:59 UTC 2008)

Poul-Henning Kamp

<phk@FreeBSD.org>
Den Andensidste Viking

Herluf Trollesvej 3
DK-4200 Slagelse

Denmark

ABSTRACT

Loran-C radio-navigation signals are broadcast in most of the northern hemisphere
and offer a solid alternative to GPS disciplined frequency standards, but a regrettable lack
of affordable receivers means that it sees very little use for this purpose.

This article describes a simple, cheap and efficient Loran-C frequency receiver for such
purposes.

The three main components of the receiver is a homebuilt loop antenna, the TAPR/N8UR
"ClockBlock" and the OliMex.com ADUC-P7026 microcontroller prototype card, for a
total cost well under $200.

1. Intr oduction

LORAN-C signals, like GPS signals, offer
wireless access to very stable and calibrated, and
thus expensive, frequency sources and can there-
fore be used to steer cheaper oscillators to correct
frequency.

Despite stern warnings to the contrary, the world
today is more or less entirely frequency locked to
the GPS satellites because that is the most con-
venient and cheap technology available.

This little project attempts to show that an equally
cheap solution can be made based on the Loran-C
signals, which are broadcast over most of the
northeren hemishere.

Compared to GPS, Loran-C signals are just about
as different as can be, where GPS satellits trans-
mit their signals with only 50W using 1.2 GHz
microwaves from 20,000 km above the Earth,
Loran-C transmits are 200 meter tall steel towers
which transmit several hundred kW at a frequency
of 100 kHz.

This makes Loran-C the perfect backup for GPS,
since there are almost no overlap between threads
to the two systems.

This paper documents what is clearly a "work in
progress", and as time and energy permits, I will
update both this paper and the source-code that
goes with it.

Poul-Henning Kamp

-2- Hardware

2. Hardware

The entire reason for this article is that a new
breed of microcontroller combines a real 32bit
CPU with fast analog/digital converters on a sin-
gle chip.

Amongst these chips my fancy took to Analog
Devices ADuC7026.

Figure 1. ADuC7026 block diagram

For one thing, Analog Devices are experts at the
analog/digital border, and the specifications on the
ADC in is much tighter than on on competing
chips. Furthermorethe ADC offers a very con-
venient fully differential input mode and is not
picky about the ADC reference voltage.

There are also some downsides: The chip needs a
42 MHz clock frequency to run the ADC at 1
megasample per second, and it only has 8kilo-
bytes of RAM.

A very interesting feature is the built in "pro-
grammable logic array", which makes it possible
to totally avoid external glue-logic in our case.

The main market for the ADuC7026 seems to be
the variable frequency motor control market, and
certain onchip facilities are less than well docu-
mented, for instance the internal timers barely
have any connection to the outside.

As it transpires, there is a way to hook things up
in a way we can use.

2.1. The42MHz clock frequency

The 42MHz clock frequency is much less of a
problem than it sounds, thanks to John Acker-
mann, aka N8UR we can simply pick up a
"ClockBlock" from TAPR.org, set the jumpers
correctly and get 42MHz out of almost any input
frequency we care to use.

Figure 2. TAPR.orgClockBlock card

2.2. TheADuC7026 microcontroller

Being mostly of the software persuation, I find the
prospect of soldering 80 pin SMD packages
something to be avoid if reasonably possible.

Fortunately my favourite Bulgarian electronics
pusher, OliMex.com, has an ADUC-P7026 proto-
type card which is perfect for this project.

Figure 3. Olimex.comADUC-P7026 card

2.3. TheAntenna

I do not really consider the antenna part of the
project, because I reused a very simple loop
antenna I built for a previous round of Loran-C
experiments, based loosely on a diagram I found
on the website VLF.it using the AD797 opera-
tional amplifier.

-3- Hardware

Figure 4. $20 homebrew loop antenna

It goes without saying that I have not spent a lot
of time on antennas, but roughly speaking, the
requirements for the antenna input signal are
something like:

A Relatively flat passband from at least 70 to
130 kHz.

Not too much signal above 300-400 kHz.

At least 100mV peak-to-peak Loran-C signal.

No more than 3V peak-to-peak total output
signal.

Fin TAPR/N8UR
ClockBlock

42 MHz

PWM

1 MHz

Timer1

FIQ ARM7TDMI
CPU

PLA[5] Mark signal

PLA[6]

PLA[7] Debug signal

ADC

ConvStart

+
-

DAC3 EFC signalDAC2DAC1

Oscilloscope

DAC0

Vref

BALUN

ADuC7026 microcontroller

Figure 5. Blockdiagram of the receiver hardware.

The downfeed from my antenna is coax cable,
and therefore I use a small balun transformer, in
my case and old T1/E1 telecom balun, to convert
from single-ended to differential.

The midpoint of the secondary is held to ½AVdd

potential by a voltage divider consisting of two
470Ω resistors.

2.4. Connectingit all

That is really all for the hardware, now we just
need to connect it together:

Jumper the ClockBlock for 3.3V supply.

Connect the ClockBlock output to pin P0.7 on
the ADUC-P7026.

Connect your chosen frequency standard to
the ClockBlock.

Connect pin P2.7 (PWM1L) to P0.6 (T1) on
the ADUC-P7026 to establish a connection
from the PWM output to the Timer1 input.

Connect pin XXX to XXX on the ADUC-
P7026 to establish a connection from
DACXXX output to the ADC’s VREF input.

Connect the differential antenna signal to pin
ADC1 and ADC2, remember that they both
must stay betweenAgnd andAvdd at all times.

-4- Hardware

Find a suitable power supply for both the
cards, it should be at least 6VDC to avoid
drawing power from the USB port, and needs
to supply about 100mA total.

Connect your computer to the USB port on
the ADUC-P7206 card.

2.5. Available output signals

The following output signals are available for reg-
ulation and debug use.

P2.1 (PLAO[6]) "Mark" output. The raising
edge marks the start of measurements in the
A-code GRI interval. The software reports
how much later than this flank the 3rd zero
crossing is found.

P2.2 (PLAO[7]) "Debug" output. This pin
flips low whenever and as long as the fast
interrupt routine runs.

P0.5 (ADCbusy) This signal is logic high while
the ADC is performing a conversion

DACXXX Analog replica of the averaged sig-
nal. Show this on your oscilloscope, use the
"mark" output as timebase trigger.

-5- Loran-Csignals

3. Loran-C signals

A Loran-C navigation chain consists of a master
transmitter and from one to five slave transmit-
ters, all broadcasting on the same "GRI", Group
Repetition Interval.

A Physical transmitting station can participate in
multiple chains, although for reasons of time-con-
tention, typically it will only participate in two
chains.

In our case, we are interested only in a single
transmitter in a single chain, typically the nearest
and strongest signal at the location of reception,
although there is nothing preventing this construc-
tion from being used for more ambitious recep-
tion projects.

3.1. What the station transmits

There are many ways to describe the Loran-C sig-
nal, but for our analysis of how and why this
receiver works, we will treat it as three compo-
nents which are convoluted to give the actual on-
air signal.

3.1.1. TheGRI periodic function

This is basically a pulse generator which emits a
pulse every GRI * 10 µseconds, so that for
instance the Sylt chain with GRI 7499 has a
period of 0.07499 seconds.

A very important feature of the GRIs used, is that
they do not result in periods that are integral mul-
tiples of 1 msecond, so signals CW radio trans-
mitters will average out, allowing us to use essen-
tially no other frequency domain filtering.

The easiest way to find the signal inside the GRI
window, would be to average all ADC samples in
the GRI period, until we can spot the signal.With
our chosen sample rate of 1MSPS, this would
require 390 kilobytes of RAM and the ADuC7026
has only 8 kilobytes.

3.1.2. Thesignal code function

This is where much of the noise resistance of the
Loran-C signal structure comes from: in alternat-
ing GRI periods two different pulse-trains are
used for each of Master and Slave stations.

Whenever the GRI periodic function triggers a
transmission eight or nine pulses will be transmit-
ted with 1 msec interval, with polarity according
to the following two figures.

Master A-Code

Master B-Code

Figure 6. Master Signal Codes

In addition to the frequency filtering provided by
the GRI averaging, the non-periodic nature of
these codes provide significant improvements in
S/N ratio.

Slave A-Code

Slave B-Code

Figure 7. Slave Signal Codes

One important feature of both codes is that if the
A and B interval codes are summed up, the odd
numbered pulses cancel out leaving only four sig-
nals, spaced 2 msec apart.

3.1.3. TheRadio Frequency Pulse function

The final step of the modulation is that each pulse
is transmitted as

f (t) = sin

2tπ
10

t2 exp−2t/65

wheret has units ofµseconds.

-1

-0.5

 0

 0.5

 1

 0 100 200 300 400

microseconds

Figure 8. Loran pulse

-6- Loran-Csignals

In reality it is only the first part of the pulse-shape
which is controlled, and in particular, the refer-
ence point is the 3rd positive zero-crossing of the
signal

-1

-0.5

 0

 0.5

 1

 0 5 10 15 20 25 30 35 40 45 50 55 60 65

microseconds

3rd (positive) zero crossing

Figure 9. Loran pulse front

When we combine all these components, the
result is something like this:

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

Figure 10. 6731 Lessay chain

All four stations in the Lessay chain are visible in
this plot, first the master in Lessay, notice the
"extra" 9th pulse 2 msec after the 8th, the follows
the Xray slave in Soustons, the Yankee slave in
Rugby and finally the Zulu slave on the island of
Sylt.

Knowing the exact geographical locations of
these four transmitters, and the time interval from
the master transmission until the slaves transmit
their pulses, we could calculate our geographic
position from the measured time-intervals
between these signals.

-7- Reception

4. Reception

So, how do we find and lock onto the Loran-C
signal with only 8 kilobytes of RAM ?

4.1. Locatingthe strongest signal

Our first task is to locate the strongest signal in
the chain, typically the transmitter closest to the
antenna.

Experiments and simulations has shown that if we
av erage every 114th sample over the GRI period,
we can expect to catch at least 30% of the peak
amplitude of the strongest signal in one of the
buckets.

It is important to note that numbers which are
divisible by 5 would not work here, as they would
risk the 100 kHz periods at the same point every
half-cycle, and therefore just might end up sam-
pling all the zero-crossings.

The longest GRI in use is 9990 in the North
Pacific chain so that requires 876 integers of 4
bytes, less than half of what we have available.

The downside to this, is that we know where one
of the four peaks of the GRI-summed code is
located in the GRI interval, but we do not know
which of the four it is, we fix that in the next state.

GRI = 9007 "Eipi"
state = 0 avg = 8 avg_cur = 8 used = 711

Peak
A:613

Figure 11. Tek4014 view of state 0

This is how the tek4014 plot looks in state zero,
we see the averaging buckets plotted, and the
peak signal is marked.

Figure 12. State 0 GRI wide signals

This is what the signals look like on the oscillo-
scope.

Trace number 3 (red), is the marker signal which
triggers the oscilloscope at the GRI rate.

Trace number 1 (black), shows theADCbusy signal
and we can see that samples are continuously
being taken through out the GRI interval.

Trace number 2 (green), is the averaged bucket
output and the peaks are quite visible here also.

Trace number 4 (cyan) is the raw antenna signal.

Figure 13. State 0 zoomed signals.

Here we soom in on the first part of the GRI
period, and we can clearly see the individual
ADC samples.

4.2. Findingthe code

The peak signal from phase 1 is within 57 sam-
ples, of the true peak value of one of the four
peaks, 2 msec apart, resulting from the GRI

-8- Reception

summing.

Now we need to find out if this is a master or
slave station, and to lock onto either the A or B
code.

If we caught the last of the four peaks, the code
starts 6 msec ahead of this point, if we caught the
first of the four peaks, it spans another 9 msec
after this point, so all in all, there are 16 spots we
need to check for the precense of pulses.

We hav eto use a repetition frequency of 2 * GRI,
sometimes called "FRI" for Frame Repetition
Rate, in order to not add the A and B codes
together now.

detected peak

search windows

Figure 14. mode1 code windows

Using no more than the 876 integers used in
phase zero, each bucket can get 54 integers and if
we space them 13 samples apart, each bucket will
cover 702 µseconds.

Again, 13 is a good number because it will make
the sample points "wander" over the 100 kHz
period of the pulses.

GRI = 9007 "Eipi"
state = 1 avg = 8 avg_cur = 8 used = 153

Master−A 11129418 @ 1:26
Master−B 3468774 @ 1:26

Slave−A 6845418 @ 5:26
Slave−B 17343927 @ 4:26

Best code: Slave−B

568 619 480 491 788

Slave−B

743 809 819 808 785 796 1000 461 336 631 979

Figure 15. Tek4014 view of state 1

As shown on the tek4014 screen, we try to find
the strongest signal for the four possible codes

and use that as input to phase 2.

Above each of the 16 buckets are shown the sig-
nal energy in parts of thousand relative to the
strongest bucket.

Figure 16. mode1a

Figure 17. mode1b

4.3. Lockingon to the signal

Now we hav eall the timing informaton we need
to start integrating the signal for good: we know
where the maximum is of the first pulse in the
code, and we know which code it is.

In this phase we integrate every ADC conversion
in a 750 sample window around the pulses.

-9- Reception

GRI = 9007 "Eipi"
state = 2 avg = 8 avg_cur = 8 used = 431

Peak
A:739

Peak
M x i30 r12 delta r23 delta peak delta err
− −−− −−−− −−−− −−−−− −−−− −−−−− −−−− −−−−− −−−−−
A 176 477 1009 −1909 2522 869 1160 − 87 2778 6

A

B 181 597 1522 −1396 1933 280 1350 103 1676 2

B

C 186 617 2522 − 396 1293 − 360 1455 208 756 8

C

Figure 18. Tek4014 view of state 2

The tek4014 screen shows two views of our inte-
gration buffer, with the bottom one zoomed in on
the peak value.

The various candidates for 3rd zero crossings are
marked and their statistics given in numeric form
below.

Figure 19. mode2a

The MARK pulses are spaced 2 * GRI apart now,
and we can see how the signal is sampled twice in
that period.

Figure 20. mode2b

When we zoom in, we can see how each of the
pulses are sampled into the same buffer, but with
the polarity specified by the chosen code.

4.4. 3rdzero crossing

In state 3 we have chosen the zero-crossing we
want to track, and hold on to it to the best of our
ability.

In practice we cannot simply nail a particular
sample in the GRI window and track that, as the
signal and the timebase may wander relative to
each other.

Instead we move the chosen sample number ear-
lier or later if the signal moves enough to give
them the same sign, and we keep track of these
steps using a counter.

If eventually, the tracking point wanders out of
the sample window, we will have to move the
sample point to put it back inside, but this is not
yet implemented.

We interpolate the true zero crossing between the
chosen point and the next, using a simple linear
model.

Earlier experiments of mine have shown that it is
possible to interpolate against the ideal Loran-C
wave shape, and this may be implemented later, if
precision warrants it.

This is the Tek4014 display in state three:

-10- Reception

GRI = 7499 "Sylt"
state = 3 avg = 8 avg_cur = 8 used = 32716

Peak
A:2315

Track
Track 168 x1 −10558853 x2 7811502

yt −10311 yn 7628 ys −17939 r 606

T2 8265122 Phase 0 frac 606

Figure 21. Tek4014 view of state 3

The top plot shows the collected and integrated
data and the bottom plot zooms in around the cho-
sen zero crossing, with the tracking sample and its
successor marked.

Notice that the sky wav e signal is stronger than
the ground wav esignal.

-11- Performance

5. Performance

These are the first performance data collected, and
they should therefore be taken with all sensible
precaution.

The signal is 7499M, 205 km away but received
with my loop antenna oriented to attenuate that
transmitter to approximately the same level as
9007M, 1294 km away.

The exponential averaging factor is 1/256.

The timebase is a PRS10 Rb steed by a Motorola
Oncore UT+.

A phase measurement is recorded once per sec-
ond using Timer2, from approx 21:00 to 23:00
UTC, 2008-11-08.

-1e-06

-5e-07

 0

 5e-07

 1e-06

 1.5e-06

 2e-06

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

se
co

nd
s

seconds

Figure 22. Raw offset samples

The standardeviation of the raw samples is 185
nanoseconds, and their linear trend is 4.6 ⋅ 10−12

second per second.

A histogram of the samples show a gaussian dis-
tribution, which seems well suited to more aggre-
sive filtering:

 0

 5

 10

 15

 20

 25

 30

 35

-1.5e-06 -1e-06 -5e-07 0 5e-07 1e-06 1.5e-06

Figure 23. Offset value interval histogram

The modified allan variance is plotted below, with
guide lines corresponding to the functions
185⋅ 10−9

τ
and

185⋅ 10−9

τ 1.5

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1 10 100 1000 10000

M
od

ifi
ed

 A
lla

n
V

ar
ia

nc
e

τ

Figure 24. Modified allan Variance

-12- Software

6. Software

The software that goes with this article is writte as
proof of concept, but is written such that experi-
mentation and further development is possible.

6.1. Thetrick y assembler bits

The tricky bit of the software is the assembler
coded fast interrupt routine in the filecrt0.S.

I hav ewritten this code so that it does not encode
any of the high-level logic, but instead mechani-
cally walks a chain of structures that tell it what to
measure and when.

For instance, when we scan the 6731 GRI in
phase zero, the specification looks like this:

{
mark = 1;
ptr = ss->ptr;
polarity = "+";
avg = 6;
cnt = 1;
timer_repeat = 114;
repeat = 590;
timer_after = 50;
next = this;

}
Figure 25. Phase zero specification

This specification tells the assembler code to
pulse the MARK pin high when starting this spec-
ification, then 590 times take one ADC measure-
ment 114 microseconds apart, then skip 50
microseconds and start over.

Since 590* 114+ 50 = 67310 this will repeatedly
scan the 6731 GRI signals.

Thepolarity member specifies that the samples all
have positive phase, theavg specifies he exponen-
tial average time constant and thenext member
tells it what to do next (the same thing).

With none of few modifications, this scheme
should also support reception of multiple stations
in the same chain or even sev eral stations from
different chains.

6.2. Thehigh level logic

The highlevel logic, such as it is, is written in C
code in theloran0.c file.

Right now the code is semi-manual, controlled by
single characters received on the serial/USB port,
running at 115200 bps.

The following commands are recognized:

c This will present a menu with Loran-C chains
from which you can choose one by entering
the character in the [...].

[@] 5543 Calcutta
[A] 5930 Canadian East Coast
[B] 5980 Russian-American
[C] 5990 Canadian West Coast
[D] 6042 Bombay
[E] 6731 Lessay
[F] 6780 China South Sea
[G] 7001 Bø
[H] 7030 Saudi Arabia South
[I] 7270 Newfoundland East Coast
[J] 7430 China North Sea
[K] 7499 Sylt
[L] 7950 Eastern Russia Chayka
[M] 7960 Gulf of Alaska
[N] 7980 Southeast U.S.
[O] 7990 Mediterranean Sea
[P] 8000 Western Russia
[Q] 8290 North Central U.S.
[R] 8390 China East Sea
[S] 8830 Saudi Arabia North
[T] 8930 North West Pacific
[U] 8970 Great Lakes
[V] 9007 Eiði
[W] 9610 South Central U.S.
[X] 9930 East Asia
[Y] 9940 U.S. West Coast
[Z] 9960 Northeast US
[[] 9990 North Pacific

Please select chain:

Figure 26. Chain selection menu

t Make TEK4014 plot via serial/USB port

u Zoom in on curves in TEK4014 plots

d Zoom out on curves in TEK4014 plots

a Double the exponential average time constant.

b Half the exponential average time constant.

1 Skip to mode 1

2 Skip to mode 2

6.3. TEK4014plotting

Before windows and mice, Tektronix produced a
series of high quality graphical terminals, based
on the storage-CRT principle.

These plotting instructions to these terminals
became the de-facto format for plotting files and
as a result, the original X11 "xterm" program
offered, and still does, TEK4014 emulation.

If you connect to the serial/USB port using the
X.org xterm program and press ’t’, then you will
be rewarded with a nice plot as seen earlier in this
paper.

If you use another terminal program which does
not support TEK4014 plotting commands, you
will get a blast of random ASCII characters.

6.4. Utility functions etc.

The other three C language files contains the code
to configure the hardware, code to use the
serial/USB port and a function which calculates

-13- Software

basic statistics for an array of integers.

The files divdi3.c, qdivrem.c and divsi3.S, are
runtime support files for the GCC compiler.

6.5. Downloading firmware to the ADuC7026

You can either use a JTAG gadget or download
the firmware via the serial/USB port.

Included in the source-code package is an "aduc"
program I have written for that purpose.

6.6. Compilingthe firmware

Cross-compiling is notoriously tricky, but it
shouldn’t be too hard in this case.

My compile-environment consists of a
FreeBSD-8-Current system where I (ab)use the
FreeBSD cross-compilation facilities by reaching
into the FreeBSD source-tree for the necssary
compiler tools.

-14- Timer1 unexplained

Figure 27. Protocol analyser trace

7. Timer1 unexplained

This is a confession: I have no idea exactly how
Timer1 is supposed to work in the ADuC7026
chip, and the way I have observed it work baffles
me, but the software manages to work around it.

The PWM section provides us with a 1MHz fre-
quency which, through an external pin, becomes
Timer1’s clock signal.

In Fig XXX above this external signal is named
PWM, which for this experiment, was give a very
short "on" time.

The signal named "MARK" is from PLA[5],
which is configured so the flip-flop is latched by
Timer1’s count-complete signal.

The signal named "ADCBUS" is the ADCbusy
signal, which indicates that the ADC has started
performing a conversion, and the ADC is also
triggered by Timer1’s count-complete signal.

So far, so good, it looks like Timer1 expires
around the middle of the figure.

But now look at the "DEBUG" signal, which is
programatically lowered as the first thing in the

fast interrupt handler, then pulsed high after
Timer1 has been reloaded.

The fast interrupt isalso triggered by Timer1’s
count-complete signal, but this happens well
before PLA[5] and the ADC receive the signal.

From the FIQ request is raised until the first
instruction of the handler is executed takes at least
five clock cycles, but it can take as much as 13
(XXX ?) cycles, depending which instruction the
CPU was executing.

This is why the "DEBUG" trace shows multiple
transititions: it is not deterministic in time.

But he mystery gets deeper here, because the pre-
vious PWM signal, presumably the one that
counds down to one, is a fair bit further ahead of
the DEBUG signal than 5-13 (XXX) clock cycles.

But it gets more mysterious still: The fast inter-
rupt handler loads a value into the T1LD register
right before the high pulse on the DEBUG signal
(right of the dotted line).

If the leftmost PWM signal is the 1 count, then
the central one is the 0 count, it would be reason-
able to expect that loading N or N-1 into the
T1LD register at this point, would cause the next
Timer1 count complete event to happen N cycles

-15- Timer1 unexplained

of the PWM signal later, starting with the one in
the right hand side of the trace.

Experiementally I have found that I have to load
N-3 to make that happen.

For this to make sense, the PWM edge that trig-
gered the count down to zero must be just outside
the papers left edge so that the central PWM pulse
is number 3 in the new counting cycle.

If that is the case, then the chip applies approxi-
mately 3µs worth of metastability latching on
Timer1s count-complete output, before it reaches
the ARM7TDMI core and the ADC unit.

At the 42MHz clock, 3µ correspond pretty pre-
cisely to 128 clock cycles.

If that is the depth of the latch-line that resolves
metastability, then I would pressume to think that
it is sufficient deep.

Enquiring minds wants to know...

