
A Cheap SDR Loran-C frequency receiver

(Formatted Thu Jan 809:41:03 UTC 2009)

Poul-Henning Kamp

<phk@FreeBSD.org>
Den Andensidste Viking

Herluf Trollesvej 3
DK-4200 Slagelse

Denmark

ABSTRACT

Loran-C radio-navigation signals are broadcast in most of the northern hemisphere
and offer a solid alternative to GPS disciplined frequency standards, but a regrettable lack
of affordable receivers means that Loran-C sees very little use for this purpose.

This article describes a simple, cheap and efficient Loran-C frequency receiver for such
purposes.

The three main components of the receiver is a homebuilt loop antenna, the TAPR/N8UR
"ClockBlock" and the OliMex.com ADUC-P7026 microcontroller prototype card, for a
total cost well under $200.

Figure 1. The complete receiver.

-2- Hardware

1. Intr oduction

LORAN-C signals, like GPS signals, offer
wireless access to very stable and calibrated, and
thus expensive, frequency sources and can there-
fore be used to steer cheaper oscillators to correct
frequency.

Despite stern warnings to the contrary, the world
today is more or less entirely frequency locked to
the GPS satellites because that is the most con-
venient and cheap technology available.

This little project attempts to show that an equally
cheap solution can be made based on the Loran-C
signals, which are broadcast over most of the
northeren hemishere.

Compared to GPS, Loran-C signals are just about
as different as can be, where GPS satellits trans-
mit their signals with only 50W using 1.2 GHz
microwaves from 20,000 km above the Earth,
Loran-C transmits are 200 meter tall steel towers
which transmit several hundred kW at a frequency
of 100 kHz.

This makes Loran-C the perfect backup for GPS,
since there are almost no overlap between threaths
to the two systems.

This paper documents what is clearly a "work in
progress", and as time and energy permits, I will
update both this paper and the source-code that
goes with it.

Poul-Henning Kamp

-3- Hardware

2. Hardware

The entire reason for this article is that a new
breed of microcontroller combines a real 32bit
CPU with fast analog/digital converters on a sin-
gle chip.

Amongst these chips my fancy took to Analog
Devices ADuC7026.

Figure 2. ADuC7026 block diagram

For one thing, Analog Devices are experts at the
analog/digital border, and the specifications on the
ADC in the ADUC is much tighter than on on
competing chips.

Furthermore the ADC offers a very convenient
fully dif ferential input mode and is not picky
about the ADC reference voltage.

There are also some downsides: The chip needs a
42 MHz clock frequency to run the ADC at 1
megasample per second, and it only has 8kilo-
bytes of RAM.

A very interesting feature is the built in "pro-
grammable logic array", which makes it possible
to totally avoid external glue-logic in our case.

The main market for the ADuC7026 seems to be
the variable frequency motor control market, and
certain on-chip facilities are less than well
thought out and documented.

One example of this is that the internal timers
barely have any connection to the outside and that
trigger conditions have unexplained systematic
delays.

As it transpires, there is a way to hook things up
in a way we can use.

2.1. The42MHz clock frequency

The 42MHz clock frequency is much less of a
problem than it sounds, thanks to John Acker-
mann, aka N8UR, we can simply pick up a
"ClockBlock" from TAPR.org, set the jumpers
correctly and get 42MHz out of almost any input

frequency we care to use.

Figure 3. TAPR.orgClockBlock card

It is important to jumper the ClockBlock for 3.3V
so it does not overdrive the ADuC7026 clock
input.

The calculation of correct jumper settings is semi-
complicated, and by far the easiest way is to use
the web-page IDT provides:

http://timing.idt.com/

calculators/ics525inputForm.html

For your convenience, here are three typical
jumper settings:

Fin = 1MHz 5MHz 10MHz

S0 0 0 0
S1 0 0 0
S2 1 1 1

R0 0 0 0
R1 0 0 0
R2 0 0 0
R3 0 0 0
R4 0 0 0
R5 0 0 0
R6 0 0 0

V0 0 0 1
V1 1 1 0
V2 0 0 1
V3 1 0 1
V4 0 0 0
V5 0 1 0
V6 1 0 0
V7 1 0 0
V8 0 0 0

Figure 4. ClockBlock jumper settings

2.2. TheADuC7026 microcontroller

Being mostly of the software persuation, I find the
prospect of soldering 80 pin SMD packages
something to be avoid if reasonably possible.

-4- Hardware

Fortunately my favourite Bulgarian electronics
pusher, OliMex.com, has an ADUC-P7026 proto-
type card which is perfect for this project.

In the USA, you can purchase it from Spark-
fun.com.

Figure 5. Olimex.comADUC-P7026 card

2.3. TheAntenna

I do not really consider the antenna part of the
project, because I reused a very simple loop
antenna I built for a previous round of Loran-C
experiments, based loosely on a diagram I found
on the websiteVLF.it , using an AD797 opera-
tional amplifier.

Figure 6. $20 homebrew loop antenna

It goes without saying that I have not spent a lot
of time on antennas, but roughly speaking, the
requirements for the antenna input signal are
something like:

A Relatively flat passband from at least 70 to
130 kHz.

Not too much signal above 300-400 kHz.

At least 100mV peak-to-peak Loran-C signal.

No more than 3V peak-to-peak total output
signal.

2.4. TheAntenna Balun

The ADC in the ADUC 7026 microcontroller can
operate in a number of modes, but by far the most
convenient for our purposes is the truly differen-
tial mode.

A differential CMOS ADC can be conveniently
driven by a signal transformator of the kind found
in old ADSL or ISDN equipment.

One particular nice thing about this approach is
that a transformator has offset voltage.

Figure 7. Antenna Balun Schematic

To be honest, this balun consists of whatever I
found in my junkbox and is not optimized in any
way shape or form.

The transformer I found is a 1:2 trasnformer from
an ISDN NT box, where both sides have center
taps. I feed only one half of the input side so it
looks like a 1:4 with secondary center-tap.

Notice that R5 should be chosen as the input
impedance multiplied by the square of the trans-
formators ratio:

R5 = Zin ⋅ N2

-5- Hardware

Fin TAPR/N8UR
ClockBlock

42 MHz

PWM

1 MHz

Timer1

FIQ ARM7TDMI
CPU

PLA[5] Mark signal

PLA[6]

PLA[7] Debug signal

ADC

ConvStart

+
-

DAC3DAC2DAC1

DAC0

EFC signal

Oscilloscope

Vref

BALUN

ADuC7026 microcontroller

Figure 8. Blockdiagram of the receiver hardware.

2.5. Connectingit all

That is really all for the hardware, now we just
need to connect it together:

Jumper the ClockBlock for 3.3V supply.

Connect the ClockBlock output to pin P0.7 on
the ADUC-P7026.

Connect your chosen frequency standard to
the ClockBlock.

Connect pin P2.7 (PWM1L) to P0.6 (T1) on
the ADUC-P7026 to establish a connection
from the PWM output to the Timer1 input.

Connect pin XXX to XXX on the ADUC-
P7026 to establish a connection from
DACXXX output to the ADC’s VREF input.

Connect the differential antenna signal to pin
ADC1 and ADC2, remember that they both
must stay betweenAgnd andAvdd at all times.

Find a suitable power supply for both the
cards, it should be at least 6VDC to avoid
drawing power from the USB port, and needs
to supply about 100mA total.

Connect your computer to the USB port on
the ADUC-P7206 card.

2.6. Available output signals

The following output signals are available for reg-
ulation and debug use.

P2.1 (PLAO[6]) "Mark" output. The raising
edge marks the start of measurements in the
A-code GRI interval. The software reports
how much later than this flank the 3rd zero
crossing is found.

P2.2 (PLAO[7]) "Debug" output. This pin
flips low whenever and as long as the fast
interrupt routine runs.

P0.5 (ADCbusy) This signal is logic high while
the ADC is performing a conversion

DACXXX Analog replica of the averaged sig-
nal. Show this on your oscilloscope, use the
"mark" output as timebase trigger.

2.7. Bootloadertrigger circuit

The ADUC-7026 has a very convenient serial
boot-loader which I use to download the firmware
to the internal flash memory.

Unfortunately, there is no way to enter the boot-
loader from software, it can only be triggered if
P0.0 is logical low during a reset.

This little circuit implements a crude mono-table
timer which can hold P0.0 down for us, while we
trigger a reset from software, thus saving a trip
down to the lab.

-6- Hardware

Figure 9. Bootstrap circuit

-7- Loran-Csignals

3. Loran-C signals

A Loran-C navigation chain consists of a master
transmitter and from one to five slave transmit-
ters, all broadcasting on the same "GRI", Group
Repetition Interval.

A Physical transmitting station can participate in
multiple chains, although for reasons of time-con-
tention, typically it will only participate in two
chains.

In our case, we are interested only in a single
transmitter in a single chain, typically the nearest
and strongest signal at the location of reception,
although there is nothing preventing this construc-
tion from being used for more ambitious recep-
tion projects.

3.1. What the station transmits

There are many ways to describe the Loran-C sig-
nal, but for our analysis of how and why this
receiver works, we will treat it as three compo-
nents which are convoluted to give the actual on-
air signal.

3.1.1. TheGRI periodic function

This is basically a pulse generator which emits a
pulse every GRI * 10 µseconds, so that for
instance the Sylt chain with GRI 7499 has a
period of 0.07499 seconds.

A very important feature of the GRIs used, is that
they do not result in periods that are integral mul-
tiples of 1 msecond, so signals from CW radio
transmitters will average out, allowing us to use
essentially no other frequency domain filtering.

3.1.2. Thesignal code function

This is where much of the noise resistance of the
Loran-C signal structure comes from: in alternat-
ing GRI periods two different pulse-trains are
used for each of Master and Slave stations.

Whenever the GRI periodic function triggers a
transmission eight or nine pulses will be transmit-
ted with 1 msec interval, with polarity according
to the following two figures.

Master A-Code

Master B-Code

Figure 10. Master Signal Codes

In addition to the frequency filtering provided by
the GRI averaging, the non-periodic nature of
these codes provide significant improvements in
S/N ratio.

Slave A-Code

Slave B-Code

Figure 11. Slave Signal Codes

One important feature of both codes is that if the
A and B interval codes are summed up, the odd
numbered pulses cancel out leaving only four sig-
nals, spaced 2 msec apart.

3.1.3. TheRadio Frequency Pulse function

The final step of the modulation is that each pulse
is transmitted as

f (t) = sin

2tπ
10

t2 exp−2t/65

wheret has units ofµseconds.

-1

-0.5

 0

 0.5

 1

 0 100 200 300 400

microseconds

Figure 12. Loran pulse

-8- Loran-Csignals

In reality it is only the first part of the pulse-shape
which is controlled, and in particular, the refer-
ence point is the 3rd positive zero-crossing of the
signal

-1

-0.5

 0

 0.5

 1

 0 5 10 15 20 25 30 35 40 45 50 55 60 65

microseconds

3rd (positive) zero crossing

Figure 13. Loran pulse front

When we combine all these components, the
result is something like this:

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

Figure 14. 6731 Lessay chain

All four stations in the Lessay chain are visible in
this plot, first the master in Lessay, notice the
"extra" 9th pulse 2 msec after the 8th, the follows
the Xray slave in Soustons, the Yankee slave in
Rugby and finally the Zulu slave on the island of
Sylt.

Knowing the exact geographical locations of
these four transmitters, and the time interval from
the master transmission until the slaves transmit
their pulses, we could calculate our geographic
position from the measured time-intervals
between these signals.

-9- Reception

4. Reception

So, how do we find and lock onto the Loran-C
signal with only 8 kilobytes of RAM ?

The brute-force method would be to simply aver-
age all samples over the FRI interval, that would
allow us to identify all signals in the chain, tell A
and B codes apart, locate the 3rd zero-crossing
and track each signal.

Unfortunately, this would require up to
2 ⋅ 9999⋅ 10 = 199980 averaging buckets.

Even if only one bit is used per bucket, this
amounts to 24.5 kilobytes, more than three times
the amount of RAM we have available.

We can get rid of the factor two by averaging only
over the GRI interval, and provided we rotate
ev ery other GRI period one millisecond, we can
still tell the four signal codes apart, at the expense
of recognizing two energy levels in the pulse pat-
terns.

+

=

Figure 15. delayed master code average pattern

Unfortunately, that still requires more than 12
kilobytes of RAM.

It is possible to implement both of these versions
of the algorithm by looking only at a small win-
dow of the GRI or FRI period at a time.

Since we realistically need 16, or preferably 32
bits, per bucket, and at best can use around 6 of
the 8 kilobytes, this would result in at least 33
windows, in practice more because of necessary
overlapping, each of which must be integrated for
some time, before a signal may be appearant.

Instead we this narrow scan, single phase
approach, we opt for a widescan, multi phase
approach.

-10- Phasezero

5. PhaseZero - Locating the strongest signal

Our first phase must locate the strongest signal in
the chain, typically the transmitter closest to the
receiving antenna.

When averaged over the GRI period, both the
master and slave codes become four pulses sepa-
rated by 2ms and our goal is simply to find the
strongest one of these.

We do not care at this point, if it is a master or
slave signal or where the A or B codes are in
time, the next phase will figure that out.

Assuming we have 1000 buckets of 32 bits avail-
able, we can sample the GRI interval every
100µs, and in doing so, we would likely miss
ev en very strong signals: We need a sampling fre-
quency which is not a divisor in the 100 kHz car-
rier frequency.

Since our goal is to just find the rough location of
the strongest signal in the GRI, we are not even
constrained to sample at rates that divide into the
1ms pulse spacing, and in fact get better results by
not doing so.

Experiments and simulations has shown that if we
av erage every 114µs, every 114th sample, over
the GRI period, we can expect to catch at least
30% of the peak amplitude of the strongest signal,
and need only 99990µs/114 = 887 buckets.

5.1. Tek4014 view of phase zero

GRI = 7499 "Sylt"
state = 0 avg = 8 avg_cur = 7 used = 83

Peak
A:1085

Figure 16. Tek4014 view of phase 0

This is how the tek4014 window looks in phase
zero, we see the averaging buckets plotted, and
the peak signal is marked.

In the lower left corner of the box is the amplitude
of the signal in ADC units.

Notice that we do in fact quite clearly see all four
peaks in the averaged signal, but one of them is
significantly taller than the other three.

5.2. Hardware view of phase zero

Figure 17. Phase 0 GRI wide signals

Trace 1 (black) is the marker output which is used
to trigger the oscilloscope.

Trace 2 (green) is the debug output.

Trace 3 (red) is the DAC1 output, this is the same
data which is plotted in the TEK4014 window.

Trace 4 (cyan) is theantenna input signal, where
we can spot the LORAN pulses, thanks to a bit of
av eraging in the oscilloscope.

Figure 18. Phase 0 zoomed signals.

Zooming in, we see a single pulse of the loran
signal in trace 4.Trace 2 shows the sample dis-
tance of 114 microseconds and trace 3 shows that
we almost managed to miss this loran pulse
entirely between two samples.

-11- Phaseone

6. PhaseOne - Identifying the code

The peak signal from phase 1 must by definition
be within 57 samples of the true peak value, of
one of the four peaks, 2 msec apart, resulting
from the GRI summing.

Now we need to find out if this is a master or
slave station, and to identify which half of the FRI
has the A and B code.

If we caught the last of the four peaks, the code
starts 6 msec ahead of this point, if we caught the
first of the four peaks, it spans another 9 msec
after this point, so all in all, there are 16 windows
we need to check for the precense of pulses.

We use a repetition frequency of 2 * GRI, some-
times called "FRI" for Frame Repetition Rate, in
order to not add the A and B codes together.

detected peak

search windows

Figure 19. mode1 code windows

Using no more than the 876 integers used in
phase zero, each bucket can get 54 integers and if
we space them 13 samples apart, each bucket will
cover 702 µseconds.

Again, 13 is a good number because it will make
the sample points "wander" over the 100 kHz
period of the pulses.

GRI = 7499 "Sylt"
state = 1 avg = 8 avg_cur = 8 used = 205

Master−A 39725179 @ 4:27
Master−B 13669117 @ 5:27

Slave−A 25598820 @ 1:27
Slave−B 20225303 @ 0:27

Best code: Master−A

90 107 116 97 931

Master−A

1000 823 899 873 861 827 866 180 937 149 148

Figure 20. Tek4014 view of phase 1

The tek4014 view shows the 16 windows and
shows the starting point of the strongest code in
them.

Above each window is the energy content of that
window, in thousands of the maximum found in
any window. Due to timing effects, it is quite
likely that one or two windows show numbers
slightly above 1000. Presently, the energylevels is
not used for code identification.

Below the windows are statistics for each of the
best match for each of the four possible codes.

Figure 21. Phase 1 FRI wide signals

This is the hardware view, showing a full FRI
interval.

Notice in trace 4, that we only sample every other
pulse group.

Figure 22. Phase 1 pulse group

Zooming in on the pulse group, we can see in
trace 2 how each bucket is sampled and in trace 3
the resulting wav eform.

Notice that the pulse shape is not fully recovered
at this point, we only sample every 13

-12- Phaseone

microseconds, but that is plenty to identify the
code.

Figure 23. Phase 1 single pulse

Here we are zoomed into just two pulse windows.

-13- Phasetwo

7. PhaseTw o - Locking on to the signal

Now we hav eall the timing informaton we need
to start integrating the signal for good: we know
where the maximum is of the first pulse in the
code, and we know which code it is.

In this phase we integrate every ADC conversion
in a 750 (XXX: check code) sample window
around all the 16 or 18 pulses in the signal, into
the same single bucket, taking care to invert the
pulses per the code.

GRI = 7499 "Sylt"
state = 2 avg = 10 avg_cur = 10 used = 607

Peak
A:1314

Peak
M x i30 r12 delta r23 delta peak delta err
− −−− −−−− −−−− −−−−− −−−− −−−−− −−−− −−−−− −−−−−
A 338 864 3498 580 1702 49 1217 − 30 629 0

A

B 343 1045 1997 − 921 1481 − 172 1415 168 1093 2

B

Figure 24. Tek4014 view of phase 2

The tek4014 view shows two views of our inte-
gration buffer, with the bottom one zoomed in on
the peak value.

The various candidates for 3rd zero crossings are
marked and their statistics given in numeric form
below.

Figure 25. Phase 2 FRI view

The MARK pulses are spaced 2 * GRI apart now,
and we can see how the signal is sampled twice in
that period.

Figure 26. Phase 2 group view

Zooming in on the group, we can see th nine
pulses of the master code being sampled.

Notice in trace 2, that there is a short burst of
samples in the space between the 8th and 9th
pulse, and after the 9th pulse.These samples are
not technically necessary, but are planned for
AGC use.

Figure 27. Phase 2 pulse view

Finally zooming in on a single pulse, we can see
the full wav e-shape of the Loran-C pulse, includ-
ing the sky-wav eecho.

The small "pre-echo" is currently unexplained.

7.1.

-14- Phasetwo

Figure 28. Finding 3rd zero

-15- Phasethree

8. PhaseThr ee - Tracking the 3rd zero-cross-
ing.

In state 3 we have chosen the zero-crossing we
want to track, and hold on to it to the best of our
ability.

In practice we cannot simply nail a particular
sample in the GRI window and track that, as the
signal and the timebase may wander relative to
each other.

We always use as tracking sample, the sample that
is closest to the 3rd zero crossing.

Nominally the tracking point is sample 75 in the
window, but we allow it to wander up to 10 sam-
ples in either direction, before we realign the sam-
pling window to put it back at sample 75.

We interpolate the true zero crossing between the
tracking sample and the two samples that sur-
round it.

This is the Tek4014 display in phase three:

GRI = 7499 "Sylt"
state = 3 avg = 10 avg_cur = 10 used = 2385

Track
A:1331

Track

Track 75 x0 17598379 x1 4823560 x2 −12793746

Phase 0 frac −189 off −189

Figure 29. Tek4014 view of state 3

The top plot shows the entire sampling window
and a marker for the tracking sample.

The bottom plot zooms in and marks both the
tracking sample and the two neighboring samples.

Below the plots are the pertinent statistics, includ-
ing calculated timing of the 3rd zero crossing.

The three samples which contribute to the inter-
polation of the zero crossing, are each filtered
with a FIR bandpass filter:

Figure 30. The FIR filter kernel

-140

-120

-100

-80

-60

-40

-20

 0

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

dB

MHz

Figure 31. The FIR filter frequency response

The exact choice of filter has proven to be
remarkably unimportant, but it does in fact reduce
the noise in the three sample points considerably.

8.1. Interpolating the zero crossing

Since we want better resolution than the whole
microseconds the sample rate provides, we need
to interpolate the true zerocrossing from the sam-
ple values around it:

Yb

Yn

Ya

Tsamp Tsamp

Tx

Figure 32. Interpolating the zero crossing

If we define Yn as the sample that has the lowest
absolute value, closest to the 3rd zero-crossing,
we can determine the range ofTx by solving:

Loran(x) = −Loran(x + 1µs) x ∈ [29µs . . .30µs]

Doing so, we findx ≈ 29. 664µs.

It follows that theYn sample must be located
between [29.664µs . . .30. 664µs] and conse-
quently thatTx ∈[−337ns . . .664ns].

-16- Phasethree

The analytical solution for findingTx given Yb,
Yn andYa is neither practically realizable with the
limited amount of CPU and memory we have
available, nor necessary.

Instead we calculate the FIR filtered signal at the
sample nearest the zero-crossing (Fn), and the two
samples right before (Fb) and right after (Fa) and
find the ratio:

Fn

Fa − Fb
∈ [−0. 2871. . .0. 2679]

Which we map to the corresponding:

Tx → [−337ns . . .664ns]

Using a lookup table containing the precomputed
conversion function:

-20

-15

-10

-5

 0

 5

 10

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-400

-200

 0

 200

 400

 600

 800

ns
 fr

om
 li

ne
ar

ns
 a

bs
ol

ut
e

ratio

Figure 33. Interpolation non-linearity

The lookup table is built by the script
pulse_param.tcl and lives in the source file
pulse_param.c .

The script automatically reads in the FIR filter
coefficients from thefir.c source file and deter-
mines how many entries the lookup table needs to
have, to provide the specified resolution.

The table is extended 5% further than necessary
in both end, to cater for edge effects and noise
components.

For a resolution of nanoseconds, the table has
1111 entries.

8.2. Serialoutput data

agc 1324
avg 10
track 75
yb 22376693
yn 8627207
ya - 8645207
Fyb 12611456
Fyn 2030392
Fya -10263240
µs 105
Phase 0
frac -185
off - 185
#

Figure 34. Serial data stream

-17- Performance

9. Performance

These are some of the first performance data col-
lected, and they should therefore be taken with all
sensible precaution.

The signal is 7499M, 205 km away.

The exponential averaging factor is 1/1024.

The timebase is a free-runing FRS10 Rb, the sam-
ples have been compensated for the randomly
chosen, but deliberate 7.225e-10 frequency offset.

A phase measurement is recorded once per sec-
ond using Timer2, from approx 2008-11-30 11:00
to 2008-12-01 11:00 UTC.

-8e-08

-6e-08

-4e-08

-2e-08

 0

 2e-08

 4e-08

 6e-08

 8e-08

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

se
co

nd
s

seconds

Figure 35. Raw offset samples

The standardeviation of the raw samples is 22.6
nanoseconds.

A histogram of the samples show a gaussian dis-
tribution, which seems well suited to more aggre-
sive averaging.

-80 -60 -40 -20 0 20 40 60 80

Figure 36. Offset value interval histogram

The modified allan variance is plotted below:

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1 10 100 1000 10000 100000

M
od

ifi
ed

 A
lla

n
V

ar
ia

nc
e

τ

Figure 37. Modified allan Variance

-18- Software

10. Software

The software that goes with this article is writte as
proof of concept, but is written such that experi-
mentation and further development is possible.

10.1. Thetrick y assembler bits

The tricky bit of the software is the assembler
coded fast interrupt routine in the filecrt0.S.

I hav ewritten this code so that it does not encode
any of the high-level logic, but instead mechani-
cally walks a chain of structures that tell it what to
measure and when.

For instance, when we scan the 6731 GRI in
phase zero, the specification looks like this:

{
mark = 1;
ptr = ss->ptr;
polarity = "+";
avg = 6;
cnt = 1;
timer_repeat = 114;
repeat = 590;
timer_after = 50;
next = this;

}
Figure 38. Phase zero specification

This specification tells the assembler code to
pulse the MARK pin high when starting this spec-
ification, then 590 times take one ADC measure-
ment 114 microseconds apart, then skip 50
microseconds and start over.

Since 590* 114+ 50 = 67310 this will repeatedly
scan the 6731 GRI signals.

Thepolarity member specifies that the samples all
have positive phase, theavg specifies he exponen-
tial average time constant and thenext member
tells it what to do next (the same thing).

With none of few modifications, this scheme
should also support reception of multiple stations
in the same chain or even sev eral stations from
different chains.

10.2. Thehigh level logic

The highlevel logic, such as it is, is written in C
code in theloran0.c file.

Right now the code is semi-manual, controlled by
single characters received on the serial/USB port,
running at 115200 bps.

The following commands are recognized:

c This will present a menu with Loran-C chains
from which you can choose one by entering
the character in the [...].

[@] 5543 Calcutta
[A] 5930 Canadian East Coast
[B] 5980 Russian-American
[C] 5990 Canadian West Coast
[D] 6042 Bombay
[E] 6731 Lessay
[F] 6780 China South Sea
[G] 7001 Bø
[H] 7030 Saudi Arabia South
[I] 7270 Newfoundland East Coast
[J] 7430 China North Sea
[K] 7499 Sylt
[L] 7950 Eastern Russia Chayka
[M] 7960 Gulf of Alaska
[N] 7980 Southeast U.S.
[O] 7990 Mediterranean Sea
[P] 8000 Western Russia
[Q] 8290 North Central U.S.
[R] 8390 China East Sea
[S] 8830 Saudi Arabia North
[T] 8930 North West Pacific
[U] 8970 Great Lakes
[V] 9007 Eiði
[W] 9610 South Central U.S.
[X] 9930 East Asia
[Y] 9940 U.S. West Coast
[Z] 9960 Northeast US
[[] 9990 North Pacific

Please select chain:

Figure 39. Chain selection menu

t Make TEK4014 plot via serial/USB port

u Zoom in on curves in TEK4014 plots

d Zoom out on curves in TEK4014 plots

a Double the exponential average time constant.

b Half the exponential average time constant.

1 Skip to mode 1

2 Skip to mode 2

10.3. TEK4014plotting

Before windows and mice, Tektronix produced a
series of high quality graphical terminals, based
on the storage-CRT principle.

These plotting instructions to these terminals
became the de-facto format for plotting files and
as a result, the original X11 "xterm" program
offered, and still does, TEK4014 emulation.

If you connect to the serial/USB port using the
X.org xterm program and press ’t’, then you will
be rewarded with a nice plot as seen earlier in this
paper.

If you use another terminal program which does
not support TEK4014 plotting commands, you
will get a blast of random ASCII characters.

10.4. Utility functions etc.

The other three C language files contains the code
to configure the hardware, code to use the
serial/USB port and a function which calculates

-19- Software

basic statistics for an array of integers.

The files divdi3.c, qdivrem.c and divsi3.S, are
runtime support files for the GCC compiler.

10.5. Downloading firmware to the ADuC7026

You can either use a JTAG gadget or download
the firmware via the serial/USB port.

Included in the source-code package is an "aduc"
program I have written for that purpose.

10.6. Compilingthe firmware

Cross-compiling is notoriously tricky, but the
FreeBSD build enviroment makes it quite easy.

To build a arm cross-compiler + toolchain, simply
do the following:

cd /usr/src
make toolchain \

TARGET=arm TARGET_ARCH=arm

Figure 40. Building an ARM toolchain on FreeBSD

The Makefile knows how to find these tools under
the /usr/obj.

-20- Timer1 unexplained

Figure 41. Protocol analyser trace

11. Timer1 unexplained

This is a confession: I have no idea exactly how
Timer1 is supposed to work in the ADuC7026
chip, and the way I have observed it work baffles
me, but the software manages to work around it.

The PWM section provides us with a 1MHz fre-
quency which, through an external pin, becomes
Timer1’s clock signal.

In Fig XXX above this external signal is named
PWM, which for this experiment, was give a very
short "on" time.

The signal named "MARK" is from PLA[5],
which is configured so the flip-flop is latched by
Timer1’s count-complete signal.

The signal named "ADCBUS" is the ADCbusy
signal, which indicates that the ADC has started
performing a conversion, and the ADC is also
triggered by Timer1’s count-complete signal.

So far, so good, it looks like Timer1 expires
around the middle of the figure.

But now look at the "DEBUG" signal, which is
programatically lowered as the first thing in the

fast interrupt handler, then pulsed high after
Timer1 has been reloaded.

The fast interrupt isalso triggered by Timer1’s
count-complete signal, but this happens well
before PLA[5] and the ADC receive the signal.

From the FIQ request is raised until the first
instruction of the handler is executed takes at least
five clock cycles, but it can take as much as 13
(XXX ?) cycles, depending which instruction the
CPU was executing.

This is why the "DEBUG" trace shows multiple
transititions: it is not deterministic in time.

But he mystery gets deeper here, because the pre-
vious PWM signal, presumably the one that
counds down to one, is a fair bit further ahead of
the DEBUG signal than 5-13 (XXX) clock cycles.

But it gets more mysterious still: The fast inter-
rupt handler loads a value into the T1LD register
right before the high pulse on the DEBUG signal
(right of the dotted line).

If the leftmost PWM signal is the 1 count, then
the central one is the 0 count, it would be reason-
able to expect that loading N or N-1 into the
T1LD register at this point, would cause the next
Timer1 count complete event to happen N cycles

-21- Timer1 unexplained

of the PWM signal later, starting with the one in
the right hand side of the trace.

Experiementally I have found that I have to load
N-3 to make that happen.

For this to make sense, the PWM edge that trig-
gered the count down to zero must be just outside
the papers left edge so that the central PWM pulse
is number 3 in the new counting cycle.

If that is the case, then the chip applies approxi-
mately 3µs worth of metastability latching on
Timer1s count-complete output, before it reaches
the ARM7TDMI core and the ADC unit.

At the 42MHz clock, 3µ correspond pretty pre-
cisely to 128 clock cycles.

If that is the depth of the latch-line that resolves
metastability, then I would pressume to think that
it is sufficient deep.

Enquiring minds wants to know...

