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ABSTRACT

Loran-C radio-neigation signals are broadcast in most of the northern hemisphere
and ofer a solid alternate © GPS disciplined frequegcstandards, but a regrettable lack
of affordable receiers means that Loran-C sees very little use for this purpose.

This article describes a simple, cheap and efficient Loran-C freguecever for such
purposes.

The three main components of the reeeis a ftomehuilt loop antenna, theAPR/NSUR

"ClockBlock" and the OliMg.com ADUC-P7026 microcontroller prototype card, for a
total cost well under $200.
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Figure 1. The complete rewei.



1. Introduction

LORAN-C signals, lile GPS signals, dér
wireless access to very stable and calibrated, and
thus epensve, frequeng sources and can there-
fore be used to steer cheaper oscillators to correct
frequeng.

Despite stern warnings to the contrahe world
today is more or less entirely frequgriocked to

the GPS satellites because that is the most con-
venient and cheap technologyaiable.

This little project attempts to siwahat an equally
cheap solution can be made based on the Loran-C
signals, which are broadcastvep most of the
northeren hemishere.

Compared to GPS, Loran-C signals are just about
as different as can be, where GPS satellits trans-
mit their signals with only 50W using 1.2 GHz
microwaves from 20,000 km abee te Earth,
Loran-C transmits are 200 meter tall steeldos
which transmit seeral hundred kW at a frequenc

of 100 kHz.

This makes Loran-C the perfect backup for GPS,
since there are almost nwedlap between threaths
to the two systems.

This paper documents what is clearly sotkvin
progress"”, and as time and energy permits, | will
update both this paper and the source-code that
goes with it.

Poul-Henning Kamp
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2. Hardware

The entire reason for this article is that avne
breed of microcontroller combines a real 32bit
CPU with fast analog/digital cearters on a sin-
gle chip.

Amongst these chips myarigy took to Analog
Devices ADuC7026.
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Figure 2. ADuC7026 block diagram

For one thing, Analog Déces are experts at the
analog/digital bordeand the specifications on the
ADC in the ADUC is much tighter than on on
competing chips.

Furthermore the ADC offers a very s@nient
fully differential input mode and is not pick
about the ADC reference voltage.

There are also some downsides: The chip needs a

42 MHz clock frequencto run the ADC at 1
megasample per second, and it only has 8kilo-
bytes of RAM.

A very interesting feature is theuili in "pro-
grammable logic array”, which mek it possible
to totally avoid external glue-logic in our case.

The main mar&t for the ADuC7026 seems to be
the variable frequencmotor control market, and
certain on-chip facilities are less than well
thought out and documented.

One eample of this is that the internal timers
barely hae any onnection to the outside and that
trigger conditions hze wexplained systematic
delays.

As it transpires, there is a way to hook things up

in a way we can use.

2.1. The42MHz clock frequency

The 42MHz clock frequencis much less of a
problem than it sounds, thanks to John éek
mann, aka N8UR, we can simply pick up a
"ClockBlock" from TAPR.og, set the jumpers
correctly and get 42MHz out of almostyaimput
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frequeng we care to use.

Figure 3. TAPR.or@lockBlock card

It is important to jumper the ClockBlock for 3.3V
so it does not werdrive the ADuC7026 clock
input.

The calculation of correct jumper settings is semi-
complicated, and byaf the easiest way is to use
the web-page IDT provides:

http://timing.idt.com/
calculators/ics525inputForm.html

For your cormvenience, here are three typical
jumper settings:
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Figure 4. ClockBlock jumper settings

2.2. TheADuC7026 microcontroller

Being mostly of the software persuation, | find the
prospect of soldering 80 pin SMD packages
something to bevaid if reasonably possible.



Fortunately my &vaurite Bulgarian electronics
pusher OliMex.com, has an ADUC-P7026 proto-
type card which is perfect for this project.

In the USA, you can purchase it from Spark-
fun.com.

uananon

Figure 5. Olimex.cor\DUC-P7026 card

2.3. TheAntenna

| do not really consider the antenna part of the
project, because | reused @&ry simple loop
antenna | built for a previous round of Loran-C
experiments, based loosely on a diagram | found
on the websit&/LF.it , using an AD797 opera-
tional amplifier.

Figure 6. $20 homebreloop antenna

It goes without saying that | f& rot spent a lot

of time on antennas, but roughly speaking, the
requirements for the antenna input signal are
something like:

O A Relatively flat passband from at least 70 to
130 kHz.

O Not too much signal alve 300-400 kHz.
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O At least 100mV peak-to-peak Loran-C signal.

O No more than 3V peak-to-peak total output
signal.

2.4. TheAntenna Balun

The ADC in the ADUC 7026 microcontroller can
operate in a number of modes, but by far the most
convenient for our purposes is the truly feifen-

tial mode.

A differential CMOS ADC can be ceeniently
driven by a ggnal transformator of the kind found
in old ADSL or ISDN equipment.

One particular nice thing about this approach is
that a transformator has offset voltage.

ANTENNA BALUN

ANT
X1 ADC2
A\ IR1y . 2R
: alio R3
BNC €3 g [a%
: [od] 27R ADC3
5/7,¢4 — ¢
1:4 R4
47gr VDD
® | | N
R2
NB: R5 = 50R x J_Cl
(TR1 ratiod”2 g o0
SUs -|_ n ﬁ[\S/ND

Figure 7. Antenna Balun Schematic

To be honest, this balun consists of whatel
found in my junkbox and is not optimized inyan
way shape or form.

The transformer | found is a 1:2 trasnformer from
an ISDN NT box, where both sidesvieacenter
taps. Ifeed only one half of the input side so it
looks like a T4 with secondary center-tap.

Notice that R5 should be chosen as the input
impedance multiplied by the square of the trans-
formators ratio:

R5 = Z,, [N?
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Figure 8. Blockdiagram of the reeei hardware.

2.5. Connectingt all

That is really all for the hardware, wmowe just
need to connect it together:

O Jumper the ClockBlock for 3.3V supply.

O Connect the ClockBlock output to pin P0.7 on
the ADUC-P7026.

O Connect your chosen frequgnetandard to
the ClockBlock.

O Connect pin P2.7R/WM1,) to P0.6 (T1) on
the ADUC-P7026 to establish a connection
from the PWM output to the Timerl input.

O Connect pin XXX to XXX on the ADUC-
P7026 to establish a connection from
DACXXX output to the ADCS VREF input.

O Connect the differential antenna signal to pin
ADC1 and ADC2, remember that thdoth
must stay betweeAy,q andAqq at all times.

O Find a suitable pmer supply for both the
cards, it should be at least 6VDC twod
drawing paver from the USB port, and needs
to supply about 100mA total.

O Connect your computer to the USB port on
the ADUC-P7206 card.

2.6. Available output signals

The following output signals arevalable for rey-
ulation and debug use.

O P2.1 PLAQ[6]) "Mark" output. The raising
edge marks the start of measurements in the
A-code GRI interal. The software reports
hov much later than this flank the 3rd zero
crossing is found.

O P2.2 PLAO[7]) "Delug" output. This pin
flips low wheneer and as long as theas$t
interrupt routine runs.

0 PO0.5 ADC,g) This signal is logic high while
the ADC is performing a ceersion

O DACXXX Analog replica of the weraged sig-
nal. Shav this on your oscilloscope, use the
"mark” output as timebase trigger.

2.7. Bootloadertrigger circuit

The ADUC-7026 has aewy cowenient serial
boot-loader which | use to download the firame
to the internal flash memory.

Unfortunately there is no way to enter the boot-
loader from software, it can only be triggered if
P0.0 is logical lav during a reset.

This little circuit implements a crude mono-table
timer which can hold P0.0 down for us, while we
trigger a reset from software, thus saving a trip
down to the lab.
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Figure 9. Bootstrap circuit



3. Loran-C signals

A Loran-C naigation chain consists of a master
transmitter and from one to &vdave transmit-
ters, all broadcasting on the same "GRI", Group
Repetition Interval.

A Physical transmitting station can participate in
multiple chains, although for reasons of time-con-
tention, typically it will only participate in ta/
chains.

In our case, we are interested only in a single
transmitter in a single chain, typically the nearest
and strongest signal at the location of reception,
although there is nothing prnting this construc-
tion from being used for more ambitious recep-
tion projects.

3.1. Whatthe station transmits

There are manways to describe the Loran-C sig-
nal, hut for our analysis of he and why this
recever works, we will treat it as three compo-
nents which are ceoluted to gve the actual on-
air signal.

3.1.1. TheGRI periodic function

This is basically a pulse generator which emits a
pulse eery GRI * 10 useconds, so that for
instance the Sylt chain with GRI 7499 has a
period of 0.07499 seconds.

A very important feature of the GRIs used, is that
they do ot result in periods that are integral mul-
tiples of 1 msecond, so signals from CW radio
transmitters will gerage out, allowing us to use
essentially no other frequgndomain filtering.

3.1.2. Thesignal code function

This is where much of the noise resistance of the
Loran-C signal structure comes from: in alternat-
ing GRI periods tw different pulse-trains are
used for each of Master and B&agations.

Wheneer the GRI periodic function triggers a
transmission eight or nine pulses will be transmit-
ted with 1 msec inteal, with polarity according
to the following tvo figures.

Loran-Csignals

Master A-Code

Master B-Code
Figure 10. Master Signal Codes
In addition to the frequemdiltering provided by
the GRI aeraging, the non-periodic nature of

these codes provide significant impements in
S/N ratio.

Slave A-Code

Slave B-Code

Figure 11. Slee Sgnal Codes

One important feature of both codes is that if the
A and B interval codes are summed up, the odd
numbered pulses cancel outig only four sig-
nals, spaced 2 msec apart.

3.1.3. TheRadio Frequency Pulse function

The final step of the modulation is that each pulse
is transmitted as
(Pt

f(t) = SInDED

t2 exp—Zt/GS

wheret has units ofsseconds.
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Figure 12. Loran pulse



In reality it is only the first part of the pulse-shape
which is controlled, and in particulathe refer
ence point is the 3rd posi#i zro-crossing of the
signal
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Figure 13. Loran pulse front

When we combine all these components, the
result is something li this:
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Figure 14. 6731 Lessay chain

All four stations in the Lessay chain are visible in
this plot, first the master in Lessayotice the
"extra" 9th pulse 2 msec after the 8th, the follo
the Xray slae in Soustons, the ahkee slae in
Rugby and finally the Zulu sla o, the island of
Sylt.

Knowing the exact geographical locations of
these four transmitters, and the time inérivom

the master transmission until thevas transmit
their pulses, we could calculate our geographic
position from the measured time-intaly
between these signals.

Loran-Csignals



4. Reception

So, hav do we fnd and lock onto the Loran-C
signal with only 8 kilobytes of RAM ?

The brute-force methodauld be to simply eer-

age all samplesver the FRI interval, that auld
allow us to dentify all signals in the chain, tell A
and B codes apart, locate the 3rd zero-crossing
and track each signal.

Unfortunately this would require up to
20999010 = 199980 meraging buckets.

Even if only one bit is used perutket, this
amounts to 24.5 kilobytes, more than three times
the amount of RAM we he available.

We @n get rid of the factor twby averaging only
over the GRI interal, and provided we rotate
evay other GRI period one millisecond, we can
still tell the four signal codes apart, at thpense
of recognizing tw enegy levels in the pulse pat-
terns.

Figure 15. delayed master coderage pattern

Unfortunately that still requires more than 12
kilobytes of RAM.

It is possible to implement both of thesersions
of the algorithm by looking only at a small win-
dow of the GRI or FRI period at a time.

Since we realistically need 16, or preferably 32
bits, per licket, and at best can use around 6 of
the 8 kilobytes, this would result in at least 33
windows, in practice more because of necessary
overlapping, each of which must be igtated for
some time, before a signal may be appearant.

Instead we this namweo scan, single phase
approach, we opt for a widescan, multi phase
approach.

Reception
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5. PhaseZero - Locating the strongest signal

Our first phase must locate the strongest signal in
the chain, typically the transmitter closest to the
receiving antenna.

When aeraged oer the GRI period, both the
master and slee mdes become four pulses sepa-
rated by 2ns and our goal is simply to find the
strongest one of these.

We b not care at this point, if it is a master or
slave dgnal or where the A or B codes are in
time, the next phase will figure that out.

Assuming we hee 1000 huckets of 32 bits \ail-
able, we can sample the GRI intervalery
100us, and in doing so, we would likely miss
even very strong signals: Wreed a sampling fre-
gueny which is not a divisor in the 100 kHz ear
rier frequeny.

Since our goal is to just find the rough location of
the strongest signal in the GRI, we are nae
constrained to sample at rates that divide into the
1ms pulse spacing, and in fact get better results by
not doing so.

Experiments and simulations has shown that if we
aveage ®ery 114us, every 114th sample, we@r

the GRI period, we canxpect to catch at least
30% of the peak amplitude of the strongest signal,
and need only 9999/114 = 887 buckets.

5.1. Tek4014 view of phase zero

GRI = 7499 "Sylt"
state = 0 avg = 8 avg_cur = 7 used = 83

i

I g b e A b A Bl sk
L e T U T

A:1085

[Peak

Figure 16. Tek4014 wie of phase O

This is hav the tek4014 winde looks in phase
zero, we see theveraging luckets plotted, and
the peak signal is marked.

In the lower left corner of the box is the amplitude
of the signal in ADC units.

Phaseero

Notice that we do in fact quite clearly see all four
peaks in the\geraged signal, but one of them is
significantly taller than the other three.

5.2. Hardware view of phase zero
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Figure 17. Phase 0 GRI wide signals

Trace 1 (black) is the marker output which is used
to trigger the oscilloscope.

Trace 2 (green) is the debug output.

Trace 3 (red) is the BC1 output, this is the same
data which is plotted in the TEK4014 wirwdo

Trace 4 (cyan) is thantenna input signal, where
we can spot the LORAN pulses, thanks to a bit of
aveaging in the oscilloscope.
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Figure 18. Phase 0 zoomed signals.

Zooming in, we see a single pulse of the loran
signal in trace 4.Trace 2 shows the sample dis-
tance of 114 microseconds and trace 3 shows that
we almost managed to miss this loran pulse
entirely between tev samples.
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6. PhaseOne - Identifying the code

The peak signal from phase 1 must by definition
be within 57 samples of the true peadue, of
one of the four peaks, 2 msec apart, resulting
from the GRI summing.

Now we reed to find out if this is a master or
slave dation, and to identify which half of the FRI
has the A and B code.

If we caught the last of the four peaks, the code
starts 6 msec ahead of this point, if we caught the
first of the four peaks, it spans another 9 msec
after this point, so all in all, there are 16 wingo

we need to check for the precense of pulses.

We wse a repetition frequepof 2 * GRI, some-
times called "FRI" for Frame Repetition Rate, in
order to not add the A and B codes together.

search windows
Figure 19. model code windows

Using no more than the 876 igers used in
phase zero, eaclutket can get 54 integers and if
we space them 13 samples apart, eachds will
cover 702 useconds.

Again, 13 is a good number because it will mak
the sample points "ander" @er the 100 kHz
period of the pulses.

GRI = 7499 "Sylt"
state = 1 avg = 8 avg_cur = 8 used = 205

90 107 116 97 931 1000 823 899 873 861 827 866 180 937 149 148

Dol ol bl il
LA L L L
TMaster
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L

Master-A 39725179 @ 4:27
Master-B 13669117 @ 5:27
Best code: Master-A

Slave-A 25598820 @ 1:27
Slave-B 20225303 @ 0:27

Figure 20. Tek4014 wie of phase 1

Phas®ne

The tek4014 vie shows the 16 windows and
shavs the starting point of the strongest code in
them.

Above each windaev is the energy content of that
window, in thousands of the maximum found in
ary window. Due to timing efects, it is quite
likely that one or t@ windons shev numbers
slightly abare 1000. Present|ythe enegylevels is
not used for code identification.

Below the windows are statistics for each of the
best match for each of the four possible codes.
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Figure 21. Phase 1 FRI wide signals

This is the hardware we showing a full FRI
interval.

Notice in trace 4, that we only samplessy other
pulse group.
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Figure 22. Phase 1 pulse group

Zooming in on the pulse group, we can see in
trace 2 hw each lhucket is sampled and in trace 3
the resulting \avedorm.

Notice that the pulse shape is not fully rezed
at this point, we only samplevay 13
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microseconds, but that is plenty to identify the
code.

Tek Run: 25.0MS/s  Average
5
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Figure 23. Phase 1 single pulse

Here we are zoomed into justdyulse windavs.
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7. PhaselTwo - Locking on to the signal

Now we haveall the timing informaton we need
to start integrating the signal for good: we wno
where the maximum is of the first pulse in the
code, and we kwawhich code it is.

In this phase we intgate @ery ADC corversion

in a 750 (XXX: check code) sample windo
around all the 16 or 18 pulses in the signal, into
the same singleutket, taking care to irert the
pulses per the code.

GRI = 7499 "Sylt"
state = 2 avg = 10 avg_cur = 10 used = 607

A:1314

[Peak

A 338 8643498 5801702 491217 - 30 629 O
B 343 1045 1997 - 921 1481 - 172 1415 168 1093 2

Figure 24. Tek4014 we of phase 2

The tek4014 vie shows two views of our inte-
gration luffer, with the bottom one zoomed in on
the peak value.

The various candidates for 3rd zero crossings are
marked and their statistics\gin in numeric form
below.
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Figure 25. Phase 2 FRI view

CAT 5,00 V<A Mo oms ChT T

Ch3 S00mv<&Rx

The MARK pulses are spaced 2 * GRI apanvno
and we can see tnthe signal is sampled twice in
that period.

Phaséwo
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Figure 26. Phase 2 group view

Zooming in on the group, we can see th nine
pulses of the master code being sampled.

Notice in trace 2, that there is a short burst of
samples in the space between the 8th and 9th
pulse, and after the 9th puls&hese samples are
not technically necessarjut are planned for
AGC use.
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Figure 27. Phase 2 pulse view

Finally zooming in on a single pulse, we can see
the full waveshape of the Loran-C pulse, includ-
ing the sky-vaveecho.

The small "pre-echo" is currently unexplained.

7.1
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Figure 28. Finding 3rd zero
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8. PhaseThree - Tacking the 3rd zero-cross-
ing.

In state 3 we ha dosen the zero-crossing we
want to track, and hold on to it to the best of our
ability.

In practice we cannot simply nail a particular
sample in the GRI windo and track that, as the
signal and the timebase mayamder relatie ©
each other.

We dways use as tracking sample, the sample that
is closest to the 3rd zero crossing.

Nominally the tracking point is sample 75 in the
window, but we allav it to wander up to 10 sam-
ples in either direction, before we realign the sam-
pling windaw to put it back at sample 75.

We interpolate the true zero crossing between the
tracking sample and the twsamples that swur
round it.

This is the Tek4014 display in phase three:

GRI = 7499 "Sylt"
state = 3 avg = 10 avg_cur = 10 used = 2385

#MWWWWWWWWWWW

A:1331

[Track

— NNV

[ITTrack

Track 75x0 17598379 x1 4823560 x2 —12793746

Phase 0 frac -189 off -189

Figure 29. Tek4014 we of state 3

The top plot shows the entire sampling wiwdo
and a marker for the tracking sample.

The bottom plot zooms in and marks both the
tracking sample and the dweighboring samples.
Below the plots are the pertinent statistics, includ-
ing calculated timing of the 3rd zero crossing.

The three samples which contrtb to the inter
polation of the zero crossing, are each filtered
with a FIR bandpass filter:

Phas¢hree

Figure 30. The FIR filter kernel
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Figure 31. The FIR filter frequencesponse

The exact choice of filter has pem to be
remarkably unimportant,up it does in fact reduce
the noise in the three sample points considerably.

8.1. Interpolating the zeio crossing

Since we wvant better resolution than the whole
microseconds the sample rate \pdes, we need

to interpolate the true zerocrossing from the sam-
ple values around it:

A \
Yn !/
|
vb Tx !
|
] ‘
 Tsamp ' Tsamp

Figure 32. Interpolating the zero crossing

If we define Yn as the sample that has tiveekst
absolute value, closest to the 3rd zero-crossing,
we can determine the rangeTofby solving:

Loran(x) = —Loran(x + 1us) x O[29us---30us]
Doing so, we findk = 29. 664us.

It follows that theYn sample must be located
between [29664us---30.664us] and conse-
guently thaffx [J[-337ns- - - 664ns].
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The analytical solution for findin@x given Yb, agc 1324
Yn andYa is neither practically realizable with the avg 10
limited amount of CPU and memory wevka track 75
awailable, nor necessary. yb 22376693
Instead we calculate the FIR filtered signal at the yn 862;2375207
sample nearest the zero-crossing (Fn), and tbe tw Béab -12611456
samples right before (Fb) and right aftea)&nd Fin 5030392
find the ratio: Fya - 10263240
Fn
0[-0.2871 - -0. 2679 us 105
Fa-Fb [ ] Phase 0
. . frac - 185
Which we map to the corresponding: of f i 185
Tx - [-337ns- - -664ng] #
Using a lookup table containing the precomputed Figure 34. Serial data stream

conversion function:

< " H
E 5 7 200
g % g
£ 2
2 .10 [

/W”MM

-0.3 -0.2 -0.1 0 0.1 0.2 03
ratio

Figure 33. Interpolation non-linearity

The lookup table is built by the script
pulse_param.tcl and lives in the source file
pulse_param.c

The script automatically reads in the FIR filter
coeficients from thdir.c  source file and deter
mines hav mary entries the lookup table needs to
have, to provide the specified resolution.

The table is etended 5% further than necessary
in both end, to cater for edge effects and noise
components.

For a resolution of nanoseconds, the table has
1111 entries.

8.2. Serialoutput data
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9. Performance

These are some of the first performance data col- -
lected, and theshould therefore be taken with all
sensible precaution. e S
The signal is 7499M, 205 knway. \\
The exponentiaheraging factor is 1/1024. N o “\\
The timebase is a free-runing FRS10 Rb, the sam- §> L
ples hae keen compensated for the randomly o
chosen, but deliberate 7.225e-10 freqyenftset.
. le-12 m
A phase measurement is recorded once per sec- Y
ond using Tmer2, from approx 2008-11-30 11:00
to 2008-12-01 11:00 UTC. et i i e - o
se08 Figure 37. Modified allan Variance
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Figure 35. Rer off set samples

The standardeviation of thewasamples is 22.6
nanoseconds.

A histogram of the samples sh@ caussian dis-
tribution, which seems well suited to more aggre-

sive averaging.
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Figure 36. Offset value interval histogram

The modified allan variance is plotted below:
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10. Software

The softvare that goes with this article is writte as
proof of concept, tt is written such thatxperi-
mentation and further gelopment is possible.

10.1. Thetricky assembler bits

The tricky bit of the software is the assembler
coded fast interrupt routine in the fdg0.S.

| havewritten this code so that it does not encode
ary of the high-leel logic, but instead mechani-
cally walks a chain of structures that tell it what to
measure and when.

For instance, when we scan the 6731 GRI in
phase zero, the specification lookelikis:

{

mar k = 1;

ptr = ss->ptr;
pol arity = "4+,
avg = 6;

cnt = 1;
timer_repeat = 114;

r epeat = 590;
timer_after = 50;

next = this;

Figure 38. Phase zero specification

This specification tells the assembler code to
pulse the MARK pin high when starting this spec-
ification, then 590 times takone ADC measure-
ment 114 microseconds apart, then skip 50
microseconds and stanas.

Since 590 114+ 50= 67310 this will repeatedly
scan the 6731 GRI signals.

The polarity member specifies that the samples all
have positive phase, thevg specifies hexponen-
tial average time constant and thmext member
tells it what to do next (the same thing).

With none of fev modifications, this scheme
should also support reception of multiple stations
in the same chain orven sveaal stations from
different chains.

10.2. Thehigh level logic

The highled logic, such as it is, is written in C
code in thdoranO.c file.

Right nav the code is semi-manual, controlled by
single characters resed on the serial/lUSB port,
running at 115200 bps.

Software

The following commands are recognized:

¢ This will present a menu with Loran-C chains
from which you can choose one by entering
the character in the [...].

Cal cutta

Canadi an East Coast
Russi an- Aer i can
Canadi an West Coast
Bonbay

Lessay

Chi na” South Sea

Bo

Saudi Arabia South

Newf oundl and East Coast
gwi Fa North Sea

y .
Eastern Russia Chayka
Gul f of Al aska
Sout heast U. S.

Medi t erranean Sea
West ern Russia
North Central U.S.
Chi na East Sea
Saudi Arabia North
North West Pacific
Great Lakes

Ei di

South Central U.S.
East Asia

U. S. West Coast
Nor t heast US
North Pacific

Pl ease sel ect chain:
Figure 39. Chain selection menu

—

Make TEK4014 plot via serial/USB port
Zoom in on curves in TEK4014 plots

Zoom out on curves in TEK4014 plots
Double the exponentialverage time constant.
Half the exponentiaharage time constant.
ip to mode 1

ip to mode 2

N BT 9 O C

10.3. TEK4014plotting

Before windavs and mice, Tektronix produced a
series of high quality graphical terminals, based
on the storage-CRprinciple.

These plotting instructions to these terminals
became the deatto format for plotting files and
as a result, the original X11 "xterm" program
offered, and still does, TEK4014 emulation.

If you connect to the serial/lUSB port using the
X.org xterm program and press 't', then you will

be ravarded with a nice plot as seen earlier in this
paper.

If you use another terminal program which does
not support TEK4014 plotting commands, you
will get a blast of random ASCII characters.

10.4. Utility functions etc.

The other three C language files contains the code
to configure the hardave, code to use the
serial/lUSB port and a function which calculates
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basic statistics for an array of integers.

The files dvdi3.c, gdivrem.c and divsi3.S, are
runtime support files for the GCC compiler.

10.5. Davnloading firmware to the ADuC7026

You can either use a AG gadget or danload
the firmware via the serial/lUSB port.

Included in the source-code package is an "aduc"
program | hae written for that purpose.

10.6. Compilingthe firmware

Cross-compiling is notoriously trigk but the
FreeBSD build enviroment makes it quite easy.

To huild a arm cross-compiler + toolchain, simply
do the following:

cd /usr/src
make tool chain \
TARGET=ar m TARGET_ARCH=ar m

Figure 40. Building an ARM toolchain on FreeBSD

The Makefile knows he to find these tools under
the /usr/obj.

Software
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Timerl unexplained
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Figure 41. Protocol analyser trace

11. Timerl unexplained

This is a confession: | ia o idea exactly ho
Timerl is supposed to work in the ADuC7026
chip, and the way | va dbsened it work bafles
me, but the software manages to work around it.

The PWM section prades us with a 1IMHz fre-
gueny which, through an external pin, becomes
Timerl’s dock signal.

In Fig XXX above this external signal is hamed
PWM, which for this gperiment, was ge a vey
short "on" time.

The signal named "MARK" is from PLA[5],
which is configured so the flip-flop is latched by
Timerl’s count-complete signal.

The signal named "ADCBS" is the ADClsy
signal, which indicates that the ADC has started
performing a cowersion, and the ADC is also
triggered by TimerX® munt-complete signal.

So far, so god, it looks lile Timerl epires
around the middle of the figure.

But nowv look at the "DEBUG" signal, which is
programatically lavered as the first thing in the

fast interrupt handlerthen pulsed high after
Timerl has been reloaded.

The fast interrupt isalso triggered by imerl’s
count-complete signal, but this happens well
before PLA[5] and the ADC reos the signal.

From the FIQ request is raised until the first
instruction of the handler ixecuted takes at least
five dock cycles, but it can takas nuch as 13
(XXX ?) cycles, depending which instruction the
CPU was recuting.

This is wly the "DEBUG" trace shows multiple
transititions: it is not deterministic in time.

But he mystery gets deeper here, because the pre-
vious PWM signal, presumably the one that
counds down to one, is a fair bit further ahead of
the DEBUG signal than 5-13 (XXX) clock/cles.

But it gets more mysterious still: Thast inter
rupt handler loads a value into the T1LQjister
right before the high pulse on the DEBUG signal
(right of the dotted line).

If the leftmost PWM signal is the 1 count, then
the central one is the O count, it would be reason-
able to e&pect that loading N or N-1 into the
T1LD register at this point, uld cause the me
Timerl count completevent to happen Nycles
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of the PWM signal latergtarting with the one in
the right hand side of the trace.

Experiementally | hae found that | hee © load
N-3 to male that happen.

For this to malke £nse, the PWM edge that trig-
gered the count down to zero must be just outside
the papers left edge so that the central PWM pulse
is number 3 in the mecounting cycle.

If that is the case, then the chip applies approxi-
mately 35 worth of metastability latching on
Timerls count-complete output, before it reaches
the ARM7TDMI core and the ADC unit.

At the 42MHz clock, & correspond pretty pre-
cisely to 128 clock cycles.

If that is the depth of the latch-line that resslv
metastability then | would pressume to think that
it is sufficient deep.

Enquiring minds wants to kmo..

Timerl unexplained



