
USENIX Association

Proceedings of the
BSDCon 2002

Conference

San Francisco, California, USA
February 11-14, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Rethinking /dev and devices in the UNIX kernel

Poul-Henning Kamp
<phk@FreeBSD.org>
The FreeBSD Project

Abstract
An outstanding novelty in UNIX at its introduction was the notion of ‘‘a file is a file is a file and even a device is a
file.’’ Going from ‘‘hardware only changes when the DEC Field engineer is here’’ to ‘‘my toaster has USB’’ has put
serious strain on the rather crude implementation of the ‘‘devices as files’’ concept, an implementation which has
survived practically unchanged for 30 years in most UNIX variants. Starting from a high-level view of devices and
the semantics that have grown around them over the years, this paper takes the audience on a grand tour of the
redesigned FreeBSD device-I/O system, to convey an overview of how it all fits together, and to explain why things
ended up as they did, how to use the new features and in particular how not to.

1. Introduction

There are really only two fundamental ways to concep-
tualise I/O devices in an operating system: The usual
way and the UNIX way.

The usual way is to treat I/O devices as their own class
of things, possibly several classes of things, and pro-
vide APIs tailored to the semantics of the devices. In
practice this means that a program must know what it is
dealing with, it has to interact with disks one way, tapes
another and rodents yet a third way, all of which are
different from how it interacts with a plain disk file.

The UNIX way has never been described better than in
the very first paper published on UNIX by Ritchie and
Thompson [Ritchie74]:

Special files constitute the most unusual feature of
the UNIX filesystem. Each supported I/O device
is associated with at least one such file. Special
files are read and written just like ordinary disk
files, but requests to read or write result in acti-
vation of the associated device. An entry for each
special file resides in directory /dev, although a
link may be made to one of these files just as it
may to an ordinary file. Thus, for example, to
write on a magnetic tape one may write on the file
/dev/mt.

Special files exist for each communication line,
each disk, each tape drive, and for physical main
memory. Of course, the active disks and the mem-
ory special files are protected from indiscriminate
access.

There is a threefold advantage in treating I/O de-
vices this way: file and device I/O are as similar as
possible; file and device names have the same syn-

tax and meaning, so that a program expecting a file
name as a parameter can be passed a device name;
finally, special files are subject to the same protec-
tion mechanism as regular files.

At the time, this was quite a strange concept; it was
totally accepted for instance, that neither the system
administrator nor the users were able to interact with a
disk as a disk. Operating systems simply did not pro-
vide access to disk other than as a filesystem. Most
vendors did not even release a program to initialise a
disk-pack with a filesystem: selling pre-initialised and
‘‘quality tested’’ disk-packs was quite a profitable busi-
ness.

In many cases some kind of API for reading and writ-
ing individual sectors on a disk pack did exist in the
operating system, but more often than not it was not
listed in the public documentation.

1.1. The traditional implementation
The initial implementation used hardcoded inode num-
bers [Ritchie98]. The console device would be inode
number 5, the paper-tape-punch number 6 and so on,
ev en if those inodes were also actual regular files in the
filesystem.

For reasons one can only too vividly imagine, this was
changed and Thompson [Thompson78] describes how
the implementation now used ‘‘major and minor’’
device numbers to index though the devsw array to the
correct device driver.

For all intents and purposes, this is the implementation
which survives in most UNIX-like systems even to this
day. Apart from the access control and timestamp
information which is found in all inodes, the special

inodes in the filesystem contain only one piece of infor-
mation: the major and minor device numbers, often log-
ically OR’ed to one field.

When a program opens a special file, the kernel uses
the major number to find the entry points in the device
driver, and passes the combined major and minor num-
bers as a parameter to the device driver.

2. The challenge
Now, we did not talk much about where the special
inodes came from to begin with. They were created by
hand, using the mknod(2) system call, usually through
the mknod(8) program.

In those days a computer had a very static hardware

configuration1 and it certainly did not change while the
system was up and running, so creating device nodes
by hand was certainly an acceptable solution.

The first sign that this would not hold up as a solution
came with the advent of TCP/IP and the telnet(1) pro-
gram, or more precisely with the telnetd(8) daemon. In
order to support remote login a ‘‘pseudo-tty’’ device
driver was implemented, basically as tty driver which
instead of hardware had another device which would
allow a process to ‘‘act as hardware’’ for the tty. The
telnetd(8) daemon would read and write data on the
‘‘master’’ side of the pseudo-tty and the user would be
running on the ‘‘slave’’ side, which would act just like
any other tty: you could change the erase character if
you wanted to and all the signals and all that stuff
worked.

Obviously with a device requiring no hardware, you
can compile as many instances into the kernel as you
like, as long as you do not use too much memory. As
system after system was connected to the ARPANet,
‘‘increasing number of ptys’’ became a regular task for
system administrators, and part of this task was to cre-
ate more special nodes in the filesystem.

Several UNIX vendors also noticed an issue when they
sold minicomputers in many different configurations:
explaining to system administrators just which special
nodes they would need and how to create them were a
significant documentation hassle. Some opted for the
simple solution and pre-populated /dev with every con-
ceivable device node, resulting in a predictable slow-
down on access to filenames in /dev.

System V UNIX provided a band-aid solution: a special
boot sequence would take effect if the kernel or the

1 Unless your assigned field engineer was present on site.

hardware had changed since last reboot. This boot pro-
cedure would amongst other things create the necessary
special files in the filesystem, based on an intricate sys-
tem of per device driver configuration files.

In the recent years, we have become used to hardware
which changes configuration at any time: people plug
USB, Firewire and PCCard devices into their comput-
ers. These devices can be anything from modems and
disks to GPS receivers and fingerprint authentication
hardware. Suddenly maintaining the correct set of spe-
cial devices in ‘‘/dev’’ became a major headache.

Along the way, UNIX kernels had learned to deal with
multiple filesystem types [Heidemann91a] and a
‘‘device-pseudo-filesystem’’ was a pretty obvious idea.
The device drivers have a pretty good idea which
devices they hav e found in the configuration, so all that
is needed is to present this information as a filesystem
filled with just the right special files. Experience has
shown that this like most other ‘‘pseudo filesystems’’
sound a lot simpler in theory than in practice.

3. Truly understanding devices
Before we continue, we need to fully understand the
‘‘device special file’’ in UNIX.

First we need to realize that a special file has the nature
of a pointer from the filesystem into a different names-
pace; a little understood fact with far reaching conse-
quences.

One implication of this is that several special files can
exist in the filename namespace all pointing to the same
device but each having their own access and timestamp
attributes:
guest# ls -l /dev/fd0 /tmp/fd0
crw-r----- 1 root operator 9, 0 Sep 27 19:21 /dev/fd0
crw-rw-rw- 1 root wheel 9, 0 Sep 27 19:24 /tmp/fd0

Obviously, the administrator needs to be on top of this:
one popular way to exploit an unguarded root prompt is
to create a replica of the special file /dev/kmem in a
location where it will not be noticed. Since /dev/kmem
gives access to the kernel memory, gaining any particu-
lar privilege can be arranged by suitably modifying the
kernel’s data structures through the illicit special file.

When NFS appeared it opened a new avenue for this
attack: People may have root privilege on one machine
but not another. Since device nodes are not interpreted
on the NFS server but rather on the local computer, a
user with root privilege on a NFS client computer can
create a device node to his liking on a filesystem
mounted from an NFS server. This device node can in
turn be used to circumvent the security of other com-
puters which mount that filesystem, including the

server, unless they protect themselves by not trusting
any device entries on untrusted filesystem by mounting
such filesystems with the nodev mount-option.

The fact that the device itself does not actually exist
inside the filesystem which holds the special file makes
it possible to perform boot-strapping stunts in the spirit
of Baron Von Münchausen [raspe1785], where a
filesystem is (re)mounted using one of its own device
vnodes:
guest# mount -o ro /dev/fd0 /mnt
guest# fsck /mnt/dev/fd0
guest# mount -u -o rw /mnt/dev/fd0 /mnt

Other interesting details are chroot(2) and jail(2)
[Kamp2000] which provide filesystem isolation for
process-trees. Whereas chroot(2) was not implemented
as a security tool [Mckusick1999] (although it has been
widely used as such), the jail(2) security facility in
FreeBSD provides a pretty convincing ‘‘virtual
machine’’ where even the root privilege is isolated and
restricted to the designated area of the machine. Obvi-
ously chroot(2) and jail(2) may require access to a
well-defined subset of devices like /dev/null, /dev/zero
and /dev/tty, whereas access to other devices such as
/dev/kmem or any disks could be used to compromise
the integrity of the jail(2) confinement.

For a long time FreeBSD, like almost all UNIX-like
systems had two kinds of devices, ‘‘block’’ and ‘‘char-
acter’’ special files, the difference being that ‘‘block’’
devices would provide caching and alignment for disk
device access. This was one of those minor architec-
tural mistakes which took forever to correct.

The argument that block devices were a mistake is
really very very simple: Many devices other than disks
have multiple modes of access which you select by
choosing which special file to use.

Pick any old timer and he will be able to recite painful
sagas about the crucial difference between the /dev/rmt

and /dev/nrmt devices for tape access.2

Tapes, asynchronous ports, line printer ports and many
other devices have implemented submodes, selectable
by the user at a special filename level, but that has not

earned them their own special file types. Only disks3

have enjoyed the privilege of getting an entire file type
dedicated to a a minor device mode.

Caching and alignment modes should have been
enabled by setting some bit in the minor device number

2 Make absolutely sure you know the difference before you
take important data on a multi-file 9-track tape to remote locations.

3 Well, OK: and some 9-track tapes.

on the disk special file, not by polluting the filesystem
code with another file type.

In FreeBSD block devices were not even implemented
in a fashion which would be of any use, since any write
errors would never be reported to the writing process.
For this reason, and since no applications were found to
be in existence which relied on block devices and since
historical usage was indeed historical [Mckusick2000],
block devices were removed from the FreeBSD system.
This greatly simlified the task of keeping track of
open(2) reference counts for disks and removed much
magic special-case code throughout.

4. Files, sockets, pipes, SVID IPC and
devices

It is an instructive lesson in inconsistency to look at the
various types of ‘‘things’’ a process can access in
UNIX-like systems today.

First there are normal files, which are our reference
yardstick here: they are accessed with open(2), read(2),
write(2), mmap(2), close(2) and various other auxiliary
system calls.

Sockets and pipes are also accessed via file handles but
each has its own namespace. That means you cannot

open(2) a socket,4 but you can read(2) and write(2) to
it. Sockets and pipes vector off at the file descriptor
level and do not get in touch with the vnode based part
of the kernel at all.

Devices land somewhere in the middle between pipes
and sockets on one side and normal files on the other.
They use the filesystem namespace, are implemented
with vnodes, and can be operated on like normal files,
but don’t actually live in the filesystem.

Devices are in fact special-cased all the way through
the vnode system. For one thing devices break the
‘‘one file-one vnode’’ rule, making it necessary to chain
all vnodes for the same device together in order to be
able to find ‘‘the canonical vnode for this device node’’,
but more importantly, many operations have to be
specifically denied on special file vnodes since they do
not make any sense.

For true inconsistency, consider the SVID IPC mecha-
nisms - not only do they not operate via file handles,
but they also sport a singularly illconceived 32 bit
numeric namespace and a dedicated set of system calls
for access.

4 This is particularly bizarre in the case of UNIX domain sock-
ets which use the filesystem as their namespace and appear in directo-
ry listings.

Several people have convincingly argued that this is an
inconsistent mess, and have proposed and implemented
more consistent operating systems like the Plan9 from
Bell Labs [Pike90a] [Pike92a]. Unfortunately reality is
that people are not interested in learning a new operat-
ing system when the one they hav e is pretty darn good,
and consequently research into better and more consis-
tent ways is a pretty frustrating [Pike2000] but by no
means irrelevant topic.

5. Solving the /dev maintenance problem
There are a number of obvious, simple but wrong ways
one could go about solving the ‘‘/dev’’ maintenance
problem.

The very straightforward way is to hack the namei()
kernel function responsible for filename translation and
lookup. It is only a minor matter of programming to
add code to special-case any lookup which ends up in
‘‘/dev’’. But this leads to problems: in the case of
chroot(2) or jail(2), the administrator will want to pre-
sent only a subset of the available devices in ‘‘/dev’’, so
some kind of state will have to be kept per
chroot(2)/jail(2) about which devices are visible and
which devices are hidden, but no obvious location for
this information is available in the absence of a mount
data structure.

It also leads to some unpleasant issues because of the
fact that ‘‘/dev/foo’’ is a synthesised directory entry
which may or may not actually be present on the
filesystem which seems to provide ‘‘/dev’’. The vnodes
either have to belong to a filesystem or they must be
special-cased throughout the vnode layer of the kernel.

Finally there is the simple matter of generality: hard-
coding the string "/dev" in the kernel is very general.

A cruder solution is to leave it to a daemon: make a
special device driver, hav e a daemon read messages
from it and create and destroy nodes in ‘‘/dev’’ in
response to these messages.

The main drawback to this idea is that now we hav e
added IPC to the mix introducing new and interesting
race conditions.

Otherwise this solution is a surprisingly effective, but
chroot(2)/jail(2) requirements prevents a simple imple-
mentation and running a daemon per jail would become
an administrative nightmare.

Another pitfall of this approach is that we are not able
to remount the root filesystem read-write at boot until
we have a device node for the root device, but if this
node is missing we cannot create it with a daemon
since the root filesystem (and hence /dev) is read-only.
Adding a read-write memory-filesystem mount /dev to

solve this problem does not improve the architectural
qualities further and certainly the KISS principle has
been violated by now.

The final and in the end only satisfactory solution is to
write a ‘‘DEVFS’’ which mounts on ‘‘/dev’’.

The good news is that it does solve the problem with
chroot(2) and jail(2): just mount a DEVFS instance on
the ‘‘dev’’ directory inside the filesystem subtree where
the chroot or jail lives. Having a mountpoint gives us a
convenient place to keep track of the local state of this
DEVFS mount.

The bad news is that it takes a lot of cleanup and care to
implement a DEVFS into a UNIX kernel.

6. DEVFS architectural decisions
Before implementing a DEVFS, it is necessary to
decide on a range of corner cases in behaviour, and
some of these choices have proved surprisingly hard to
settle for the FreeBSD project.

6.1. The ‘‘persistence’’ issue
When DEVFS in FreeBSD was initially presented at a
BoF at the 1995 USENIX Technical Conference in
New Orleans, a group of people demanded that it pro-
vide ‘‘persistence’’ for administrative changes.

When trying to get a definition of ‘‘persistence’’, peo-
ple can generally agree that if the administrator changes
the access control bits of a device node, they want that
mode to survive across reboots.

Once more tricky examples of the sort of manipulations
one can do on special files are proposed, people rapidly
disagree about what should be supported and what
should not.

For instance, imagine a system with one floppy drive
which appears in DEVFS as ‘‘/dev/fd0’’. Now the
administrator, in order to get some badly written soft-
ware to run, links this to ‘‘/dev/fd1’’:

ln /dev/fd0 /dev/fd1

This works as expected and with persistence in
DEVFS, the link is still there after a reboot. But what
if after a reboot another floppy drive has been con-
nected to the system? This drive would naturally have
the name ‘‘/dev/fd1’’, but this name is now occupied by
the administrators hard link. Should the link be bro-
ken? Should the new floppy drive be called
‘‘/dev/fd2’’? Nobody can agree on anything but the
ugliness of the situation.

Given that we are no longer dependent on DEC Field
engineers to change all four wheels to see which one is

flat, the basic assumption that the machine has a con-
stant hardware configuration is simply no longer true.
The new assumption one should start from when
analysing this issue is that when the system boots, we
cannot know what devices we will find, and we can not
know if the devices we do find are the same ones we
had when the system was last shut down.

And in fact, this is very much the case with laptops
today: if I attach my IOmega Zip drive to my laptop it
appears like a SCSI disk named ‘‘/dev/da0’’, but so
does the RAID-5 array attached to the PCI SCSI con-
troller installed in my laptop’s docking station. If I
change mode to ‘‘a+rw’’ on the Zip drive, do I want
that mode to apply to the RAID-5 as well? Unlikely.

And what if we have persistent information about the
mode of device ‘‘/dev/sio0’’, but we boot and do not
find any sio devices? Do we keep the information in
our device-persistence registry? How long do we keep
it? If I borrow a a modem card, set the permissions to
some non-standard value like 0666, and then attach
some other serial device a year from now - do I want
some old permissions changes to come back and haunt
me, just because they both happened to be ‘‘/dev/sio0’’?
Unlikely.

The fact that more people have laptop computers today
than five years ago, and the fact that nobody has been
able to credibly propose where a persistent DEVFS
would actually store the information about these things
in the first place has settled the issue.

Persistence may be the right answer, but to the wrong
question: persistence is not a desirable property for a
DEVFS when the hardware configuration may change
literally at any time.

6.2. Who decides on the names?
In a DEVFS-enabled system, the responsibility for cre-
ating nodes in /dev shifts to the device drivers, and con-
sequently the device drivers get to choose the names of
the device files. In addition an initial value for owner,
group and mode bits are provided by the device driver.

But should it be possible to rename ‘‘/dev/lpt0’’ to
‘‘/dev/myprinter’’? While the obvious affirmative
answer is easy to arrive at, it leaves a lot to be desired
once the implications are unmasked.

Most device drivers know their own name and use it
purposefully in their debug and log messages to iden-
tify themselves. Furthermore, the ‘‘NewBus’’ [New-
Bus] infrastructure facility, which ties hardware to
device drivers, identifies things by name and unit num-
bers.

A very common way to report errors in fact:
#define LPT_NAME "lpt" /* our official name */
[...]
printf(LPT_NAME

": cannot alloc ppbus (%d)!", error);

So despite the user renaming the device node pointing
to the printer to ‘‘myprinter’’, this has absolutely no
effect in the kernel and can be considered a userland
aliasing operation.

The decision was therefore made that it should not be
possible to rename device nodes since it would only
lead to confusion and because the desired effect could
be attained by giving the user the ability to create sym-
links in DEVFS.

6.3. On-demand device creation
Pseudo-devices like pty, tun and bpf, but also some real
devices, may not pre-emptively create entries for all
possible device nodes. It would be a pointless waste of
resources to always create 1000 ptys just in case they
are needed, and in the worst case more than 1800
device nodes would be needed per physical disk to rep-
resent all possible slices and partitions.

For pseudo-devices the task at hand is to make a magic
device node, ‘‘/dev/pty’’, which when opened will mag-
ically transmogrify into the first available pty subde-
vice, maybe ‘‘/dev/pty123’’.

Device submodes, on the other hand, work by having
multiple entries in /dev, each with a different minor
number, as a way to instruct the device driver in aspects
of its operation. The most widespread example is prob-
ably ‘‘/dev/mt0’’ and ‘‘/dev/nmt0’’, where the node
with the extra ‘‘n’’ instructs the tape device driver to

not rewind on close.5

Some UNIX systems have solved the problem for
pseudo-devices by creating magic cloning devices like
‘‘/dev/tcp’’. When a cloning device is opened, it finds a
free instance and through vnode and file descriptor
mangling return this new device to the opening process.

This scheme has two disadvantages: the complexity of
switching vnodes in midstream is non-trivial, but even
worse is the fact that it does not work for submodes for
a device because it only reacts to one particular /dev
entry.

The solution for both needs is a more flexible on-
demand device creation, implemented in FreeBSD as a
two-level lookup. When a filename is looked up in

5 This is the answer to the question in footnote number 2.

DEVFS, a match in the existing device nodes is sought
first and if found, returned. If no match is found,
device drivers are polled in turn to ask if they would be
able to synthesise a device node of the given name.

The device driver gets a chance to modify the name and
create a device with make_dev(). If one of the drivers
succeeds in this, the lookup is started over and the
newly found device node is returned:
pty_clone()

if (name != "pty")
return(NULL); /* no luck */

n = find_next_unit();
dev = make_dev(...,n,"pty%d",n);
name = dev->name;
return(dev);

An interesting mixed use of this mechanism is with the
sound device drivers. Modern sound devices have mul-
tiple channels, presumably to allow the user to listen to
CNN, Napstered MP3 files and Quake sound effects at
the same time. The only problem is that all applica-
tions attempt to open ‘‘/dev/dsp’’ since they hav e no
concept of multiple sound devices. The sound device
drivers use the cloning facility to direct ‘‘/dev/dsp’’ to
the first available sound channel completely transpar-
ently to the process.

There are very few drawbacks to this mechanism, the
major one being that ‘‘ls /dev’’ now errs on the sparse
side instead of the rich when used as a system device
inventory, a practice which has always been of dubious
precision at best.

6.4. Deleting and recreating devices
Deleting device nodes is no problem to implement, but
as likely as not, some people will want a method to get
them back. Since only the device driver know how to
create a given device, recreation cannot be performed
solely on the basis of the parameters provided by a pro-
cess in userland.

In order to not complicate the code which updates the
directory structure for a mountpoint to reflect changes
in the DEVFS inode list, a deleted entry is merely
marked with DE_WHITEOUT instead of being
removed entirely. Otherwise a separate list would be
needed for inodes which we had deleted so that they
would not be mistaken for new inodes.

The obvious way to recreate deleted devices is to let
mknod(2) do it by matching the name and disregarding
the major/minor arguments. Recreating the device with
mknod(2) will simply remove the DE_WHITEOUT
flag.

6.5. Jail(2), chroot(2) and DEVFS
The primary requirement from facilities like jail(2) and
chroot(2) is that it must be possible to control the con-
tents of a DEVFS mount point.

Obviously, it would not be desirable for dynamic
devices to pop into existence in the carefully pruned
/dev of jails so it must be possible to mark a DEVFS
mountpoint as ‘‘no new devices’’. And in the same
way, the jailed root should not be able to recreate
device nodes which the real root has removed.

These behaviours will be controlled with mount
options, but these have not yet been implemented
because FreeBSD has run out of bitmap flags for mount
options, and a new unlimited mount option implemen-
tation is still not in place at the time of writing.

One mount option ‘‘jaildevfs’’, will restrict the contents
of the DEVFS mountpoint to the ‘‘normal set’’ of
devices for a jail and automatically hide all future
devices and make it impossible for a jailed root to un-
hide hidden entries while letting an un-jailed root do so.

Mounting or remounting read-only, will prevent all
future devices from appearing and will make it impos-
sible to hide or un-hide entries in the mountpoint. This
is probably only useful for chroots or jails where no tty
access is intended since cloning will not work either.

More mount options may be needed as more experience
is gained.

6.6. Default mode, owner & group
When a device driver creates a device node, and a
DEVFS mount adds it to its directory tree, it needs to
have some values for the access control fields: mode,
owner and group.

Currently, the device driver specifies the initial values
in the make_dev() call, but this is far from optimal. For
one thing, embedding magic UIDs and GIDs in the ker-
nel is simply bad style unless they are numerically zero.
More seriously, they represent compile-time defaults
which in these enlightened days is rather old-fashioned.

7. Cleaning up before we build: struct
specinfo and dev_t
Most of the rest of the paper will be about the various
challenges and issues in the implementation of DEVFS
in FreeBSD. All of this should be applicable to other
systems derived from 4.4BSD-Lite as well.

POSIX has defined a type called ‘‘dev_t’’ which is the
identity of a device. This is mainly for use in the few
system calls which knows about devices: stat(2),
fstat(2) and mknod(2). A dev_t is constructed by

logically OR’ing the major# and minor# for the device.
Since those have been defined as having no overlapping
bits, the major# and minor# can be retrieved from the
dev_t by a simple masking operation.

Although the kernel had a well-defined concept of any
particular device it did not have a data structure to rep-
resent "a device". The device driver has such a struc-
ture, traditionally called ‘‘softc’’ but the high kernel
does not (and should not!) have access to the device
driver’s private data structures.

It is an interesting tale how things got to be this way,6

but for now just record for a fact how the actual rela-
tionship between the data structures was in the 4.4BSD
release (Fig. 1). [44BSDBook]

As for all other files, a vnode references a filesystem
inode, but in addition it points to a ‘‘specinfo’’ struc-
ture. In the inode we find the dev_t which is used to
reference the device driver.

Access to the device driver happens by extracting the
major# from the dev_t, indexing through the global
devsw[] array to locate the device driver’s entry point.

The device driver will extract the minor# from the
dev_t and use that as the index into the softc array of
private data per device.

The ‘‘specinfo’’ structure is a little sidekick vnodes
grew underway, and is used to find all vnodes which

file
handle

vnode specinfo

inode
devsw[]
[major#]

device
driver

softc[]
[minor#]

file
handle

vnode specinfo

inode

Fig. 1 - Data structures in 4.4BSD

6 Basically, devices should have been moved up with sockets
and pipes at the file descriptor level when the VFS layering was intro-
duced, rather than have all the special casing throughout the vnode
system.

reference the same device (i.e. they hav e the same
major# and minor#). This linkage is used to determine
which vnode is the ‘‘chosen one’’ for this device, and to
keep track of open(2)/close(2) against this device. The
actual implementation was an inefficient hash imple-
mentation, which depending on the vnode reclamation
rate and /dev directory lookup traffic, may become a
measurable performance liability.

7.1. The new vnode/inode/dev_t layout
In the new layout (Fig. 2) the specinfo structure takes a
central role. There is only one instanace of struct
specinfo per device (i.e. unique major# and minor#
combination) and all vnodes referencing this device
point to this structure directly.

In userland, a dev_t is still the logical OR of the major#
and minor#, but this entity is now called a udev_t in the
kernel. In the kernel a dev_t is now a pointer to a struct
specinfo.

All vnodes referencing a device are linked to a list
hanging directly off the specinfo structure, removing
the need for the hash table and consequently simplify-
ing and speeding up a lot of code dealing with vnode
instantiation, retirement and name-caching.

The entry points to the device driver are stored in the
specinfo structure, removing the need for the devsw[]
array and allowing device drivers to use separate entry-
points for various minor numbers.

This is is very convenient for devices which have a
‘‘control’’ device for management and tuning. The
control device, almost always have entirely separate
open/close/ioctl implementations [MD.C].

In addition to this, two data elements are included in
the specinfo structure but ‘‘owned’’ by the device
driver. Typically the device driver will store a pointer

file
handle

vnode specinfo

inode

file
handle

vnode

inode
device
driver

Fig. 2 - The new FreeBSD data structures.

to the softc structure in one of these, and unit number
or mode information in the other.

This removes the need for drivers to find the softc using
array indexing based on the minor#, and at the same
time has obliviated the need for the compiled-in
‘‘NFOO’’ constants which traditionally determined
how many softc structures and therefore devices the

driver could support.7

There are some trivial technical issues relating to allo-
cating the storage for specinfo early in the boot
sequence and how to find a specinfo from the
udev_t/major#+minor#, but they will not be discussed
here.

7.2. Creating and destroying devices
Ideally, devices should only be created and destroyed
by the device drivers which know what devices are pre-
sent. This is accomplished with the make_dev() and
destroy_dev() function calls.

Life is seldom quite that simple. The operating system
might be called on to act as a NFS server for a diskless
workstation, possibly even of a different architecture,
so we still need to be able to represent device nodes
with no device driver backing in the filesystems and
consequently we need to be able to create a specinfo
from the major#+minor# in these inodes when we
encounter them. In practice this is quite trivial, but in a
few places in the code one needs to be aware of the
existence of both ‘‘named’’ and ‘‘anonymous’’ specinfo
structures.

The make_dev() call creates a specinfo structure and
populates it with driver entry points, major#, minor#,
device node name (for instance ‘‘lpt0’’), UID, GID and
access mode bits. The return value is a dev_t (i.e., a
pointer to struct specinfo). If the device driver deter-
mines that the device is no longer present, it calls
destroy_dev(), giving a dev_t as argument and the dev_t
will be cleaned and converted to an anonymous dev_t.

Once created with make_dev() a named dev_t exists
until destroy_dev() is called by the driver. The driver
can rely on this and keep state in the fields in dev_t
which is reserved for driver use.

7 Not to mention all the drivers which implemented panic(2)
because they forgot to perform bounds checking on the index before
using it on their softc arrays.

8. DEVFS
By now we hav e all the relevant information about each
device node collected in struct specinfo but we still
have one problem to solve before we can add the
DEVFS filesystem on top of it.

8.1. The interrupt problem
Some device drivers, notably the CAM/SCSI subsys-
tem in FreeBSD will discover changes in the device
configuration inside an interrupt routine.

This imposes some limitations on what can and should
do be done: first one should minimise the amount of
work done in an interrupt routine for performance rea-
sons; second, to avoid deadlocks, vnodes and mount-
points should not be accessed from an interrupt routine.

Also, in addition to the locking issue, a machine can
have many instances of DEVFS mounted: for a jail(8)
based virtual-machine web-server several hundred
instances is not unheard of, making it far too expensive
to update all of them in an interrupt routine.

The solution to this problem is to do all the filesystem
work on the filesystem side of DEVFS and use atomi-
cally manipulated integer indices (‘‘inode numbers’’) as
the barrier between the two sides.

The functions called from the device drivers,
make_dev(), destroy_dev() &c. only manipulate the
DEVFS inode number of the dev_t in question and do
not even get near any mountpoints or vnodes.

For make_dev() the task is to assign a unique inode
number to the dev_t and store the dev_t in the DEVFS-
global inode-to-dev_t array.
make_dev(...)

store argument values in dev_t
assign unique inode number to dev_t
atomically insert dev_t into inode_array

For destroy_dev() the task is the opposite: clear the
inode number in the dev_t and NULL the pointer in the
devfs-global inode-to-dev_t array.
destroy_dev(...)

clear fields in dev_t
zero dev_t inode number.
atomically clear entry in inode_array

Both functions conclude by atomically incrementing a
global variable devfs_generation to leave an
indication to the filesystem side that something has
changed.

By modifying the global state only with atomic instruc-
tions, locks have been entirely avoided in this part of
the code which means that the make_dev() and
destroy_dev() functions can be called from practically
anywhere in the kernel at any time.

On the filesystem side of DEVFS, the only two vnode
methods which examine or rely on the directory struc-
ture, VOP_LOOKUP and VOP_READDIR, call the
function devfs_populate() to update their mountpoint’s
view of the device hierarchy to match current reality
before doing any work.
devfs_readdir(...)

devfs_populate(...)
...

The devfs_populate() function, compares the current
devfs_generation to the value saved in the
mountpoint last time devfs_populate() completed and if
(actually: while) they differ a linear run is made
through the devfs-global inode-array and the directory
tree of the mountpoint is brought up to date.

The actual code is slightly more complicated than
shown in the pseudo-code here because it has to deal
with subdirectories and hidden entries.
devfs_populate(...)
while (mount->generation != devfs_generation)
for i in all inodes

if inode created)
create directory entry

else if inode destroyed
remove directory entry

Access to the global DEVFS inode table is again imple-
mented with atomic instructions and failsafe retries to
avoid the need for locking.

From a performance point of view this scheme also
means that a particular DEVFS mountpoint is not
updated until it needs to be, and then always by a pro-
cess belonging to the jail in question thus minimising
and distributing the CPU load.

9. Device-driver impact
All these changes have had a significant impact on how
device drivers interact with the rest of the kernel
regarding registration of devices.

If we look first at the ‘‘before’’ image in Fig. 3, we
notice first the NFOO define which imposes a firm
upper limit on the number of devices the kernel can
deal with. Also notice that the softc structure for all of
them is allocated at compile time. This is because most
device drivers (and texts on writing device drivers) are
from before the general kernel malloc facility [Mcku-
sick1988] was introduced into the BSD kernel.

#ifndef NFOO
define NFOO 4
#endif

struct foo_softc {
...

} foo_softc[NFOO];

int nfoo = 0;

foo_open(dev, ...)
{

int unit = minor(dev);
struct foo_softc *sc;

if (unit >= NFOO || unit >= nfoo)
return (ENXIO);

sc = &foo_softc[unit]

...
}

foo_attach(...)
{

struct foo_softc *sc;
static int once;

...
if (nfoo >= NFOO) {

/* Have hardware, can’t handle */
return (-1);

}
sc = &foo_softc[nfoo++];
if (!once) {

cdevsw_add(&cdevsw);
once++;

}
...

}

Fig. 3 - Device-driver, old style.

Also notice how range checking is needed to make sure
that the minor# is inside range. This code gets more
complex if device-numbering is sparse. Code equiv-
alent to that shown in the foo_open() routine would
also be needed in foo_read(), foo_write(), foo_ioctl()
&c.

Finally notice how the attach routine needs to remem-
ber to register the cdevsw structure (not shown) when
the first device is found.

Now, compare this to our ‘‘after’’ image in Fig. 4.
NFOO is totally gone and so is the compile time alloca-
tion of space for softc structures.

The foo_open (and foo_close, foo_ioctl &c) functions
can now derive the softc pointer directly from the dev_t
they receive as an argument.

struct foo_softc {
....

};

int nfoo;

foo_open(dev, ...)
{

struct foo_softc *sc = dev->si_drv1;

...
}

foo_attach(...)
{

struct foo_softc *sc;

...
sc = MALLOC(..., M_ZERO);
if (sc == NULL) {

/* Have hardware, can’t handle */
return (-1);

}
sc->dev = make_dev(&cdevsw, nfoo,

UID_ROOT, GID_WHEEL, 0644,
"foo%d", nfoo);

nfoo++;
sc->dev->si_drv1 = sc;
...

}

Fig. 4 - Device-driver, new style.

In foo_attach() we can now attach to all the devices we
can allocate memory for and we register the cdevsw
structure per dev_t rather than globally.

This last trick is what allows us to discard all bounds
checking in the foo_open() &c. routines, because they
can only be called through the cdevsw, and the cdevsw
is only attached to dev_t’s which foo_attach() has cre-
ated. There is no way to end up in foo_open() with a
dev_t not created by foo_attach().

In the two examples here, the difference is only 10 lines
of source code, primarily because only one of the
worker functions of the device driver is shown. In real
device drivers it is not uncommon to save 50 or more
lines of source code which typically is about a percent
or two of the entire driver.

10. Future work
Apart from some minor issues to be cleaned up,
DEVFS is now a reality and future work therefore is
likely concentrate on applying the facilities and func-
tionality of DEVFS to FreeBSD.

10.1. devd
It would be logical to complement DEVFS with a
‘‘device-daemon’’ which could configure and de-con-
figure devices as they come and go. When a disk

appears, mount it. When a network interface appears,
configure it. And in some configurable way allow the
user to customise the action, so that for instance images
will automatically be copied off the flash-based media
from a camera, &c.

In this context it is good to question how we view
dynamic devices. If for instance a printer is removed in
the middle of a print job and another printer arrives a
moment later, should the system automatically continue
the print job on this new printer? When a disk-like
device arrives, should we always mount it? Should we
have a database of known disk-like devices to tell us
where to mount it, what permissions to give the mount-
point? Some computers come in multiple configura-
tions, for instance laptops with and without their dock-
ing station. How do we want to present this to the users
and what behaviour do the users expect?

10.2. Pathname length limitations
In order to simplify memory management in the early
stages of boot, the pathname relative to the mountpoint
is presently stored in a small fixed size buffer inside
struct specinfo. It should be possible to use filenames
as long as the system otherwise permits, so some kind
of extension mechanism is called for.

Since it cannot be guaranteed that memory can be allo-
cated in all the possible scenarios where make_dev()
can be called, it may be necessary to mandate that the
caller allocates the buffer if the content will not fit
inside the default buffer size.

10.3. Initial access parameter selection
As it is now, device drivers propose the initial mode,
owner and group for the device nodes, but it would be
more flexible if it were possible to give the kernel a set
of rules, much like packet filtering rules, which allow
the user to set the wanted policy for new devices. Such
a mechanism could also be used to filter new devices
for mount points in jails and to determine other
behaviour.

Doing these things from userland results in some awk-
ward race conditions and software bloat for embedded
systems, so a kernel approach may be more suitable.

10.4. Applications of on-demand device
creation
The facility for on-demand creation of devices has
some very interesting possibilities.

One planned use is to enable user-controlled labelling
of disks. Today disks have names like /dev/da0,

/dev/ad4, but since this numbering is topological any
change in the hardware configuration may rename the
disks, causing /etc/fstab and backup procedures to get
out of sync with the hardware.

The current idea is to store on the media of the disk a
user-chosen disk name and allow access through this
name, so that for instance /dev/mydisk0 would be a
symlink to whatever topological name the disk might
have at any giv en time.

To simplify this and to avoid a forest of symlinks, it
will probably be decided to move all the sub-divisions
of a disk into one subdirectory per disk so just a single
symlink can do the job. In practice that means that the
current /dev/ad0s2f will become something like
/dev/ad0/s2f and so on. Obviously, in the same way,
disks could also be accessed by their topological
address, down to the specific path in a SAN environ-
ment.

Another potential use could be for automated offline
data media libraries. It would be quite trivial to make it
possible to access all the media in the library using
/dev/lib/$LABEL which would be a remarkable simpli-
fication compared with most current automated
retrieval facilities.

Another use could be to access devices by parameter
rather than by name. One could imagine sending a
printjob to /dev/printer/color/A2 and behind the scenes
a search would be made for a device with the correct
properties and paper-handling facilities.

11. Conclusion
DEVFS has been successfully implemented in
FreeBSD, including a powerful, simple and flexible
solution supporting pseudo-devices and on-demand
device node creation.

Contrary to the trend, the implementation added func-
tionality with a net decrease in source lines, primarily
because of the improved API seen from device drivers
point of view.

Even if DEVFS is not desired, other 4.4BSD derived
UNIX variants would probably benefit from adopting
the dev_t/specinfo related cleanup.

12. Acknowledgements
I first got started on DEVFS in 1989 because the
abysmal performance of the Olivetti M250 computer
forced me to implement a network-disk-device for
Minix in order to retain my sanity. That initial work
led to a crude but working DEVFS for Minix, so obvi-
ously both Andrew Tannenbaum and Olivetti deserve

credit for inspiration.

Julian Elischer implemented a DEVFS for FreeBSD
around 1994 which never quite made it to maturity and
subsequently was abandoned.

Bruce Evans deserves special credit not only for his
keen eye for detail, and his competent criticism but also
for his enthusiastic resistance to the very concept of
DEVFS.

Many thanks to the people who took time to help me
stamp out ‘‘Danglish’’ through their reviews and com-
ments: Chris Demetriou, Paul Richards, Brian Somers,
Nik Clayton, and Hanne Munkholm. Any remaining
insults to proper use of english language are my own
fault.

13. References
[44BSDBook] Mckusick, Bostic, Karels & Quarter-
man: ‘‘The Design and Implementation of 4.4 BSD
Operating System.’’ Addison Wesley, 1996, ISBN
0-201-54979-4.

[Heidemann91a] John S. Heidemann: ‘‘Stackable lay-
ers: an architecture for filesystem development.’’ Mas-
ter’s thesis, University of California, Los Angeles, July
1991. Available as UCLA technical report
CSD-910056.

[Kamp2000] Poul-Henning Kamp and Robert N. M.
Watson: ‘‘Confining the Omnipotent root.’’ Proceed-
ings of the SANE 2000 Conference. Av ailable in
FreeBSD distributions in /usr/share/papers.

[MD.C] Poul-Henning Kamp et al: FreeBSD memory
disk driver: src/sys/dev/md/md.c

[Mckusick1988] Marshall Kirk Mckusick, Mike J.
Karels: ‘‘Design of a General Purpose Memory Alloca-
tor for the 4.3BSD UNIX-Kernel’’ Proceedings of the
San Francisco USENIX Conference, pp. 295-303, June
1988.

[Mckusick1999] Dr. Marshall Kirk Mckusick: Private
email communication. ‘‘According to the SCCS logs,
the chroot call was added by Bill Joy on March 18,
1982 approximately 1.5 years before 4.2BSD was
released. That was well before we had ftp servers of
any sort (ftp did not show up in the source tree until
January 1983). My best guess as to its purpose was to
allow Bill to chroot into the /4.2BSD build directory
and build a system using only the files, include files, etc
contained in that tree. That was the only use of chroot
that I remember from the early days.’’

[Mckusick2000] Dr. Marshall Kirk Mckusick: Private
communication at BSDcon2000 conference. ‘‘I have
not used block devices since I wrote FFS and that was

many years ago.’’

[NewBus] NewBus is a subsystem which provides most
of the glue between hardware and device drivers.
Despite the importance of this there has never been
published any good overview documentation for it.
The following article by Alexander Langer in
‘‘Dæmonnews’’ is the best reference I can come up
with: http://www.daemonnews.org/200007/newbus-

intro.html

[Pike2000] Rob Pike: ‘‘Systems Software Research is
Irrelevant.’’
http://www.cs.bell−labs.com/who/rob/utah2000.pdf

[Pike90a] Rob Pike, Dave Presotto, Ken Thompson and
Howard Trickey: ‘‘Plan 9 from Bell Labs.’’ Proceed-
ings of the Summer 1990 UKUUG Conference.

[Pike92a] Rob Pike, Dave Presotto, Ken Thompson,
Howard Trickey and Phil Winterbottom: ‘‘The Use of
Name Spaces in Plan 9.’’ Proceedings of the 5th ACM
SIGOPS Workshop.

[Raspe1785] Rudolf Erich Raspe: ‘‘Baron Münch-
hausen’s Narrative of his marvellous Travels and Cam-
paigns in Russia.’’ Kearsley, 1785.

[Ritchie74] D.M. Ritchie and K. Thompson: ‘‘The
UNIX Time-Sharing System’’ Communications of the
ACM, Vol. 17, No. 7, July 1974.

[Ritchie98] Dennis Ritchie: private conversation at
USENIX Annual Technical Conference New Orleans,
1998.

[Thompson78] Ken Thompson: ‘‘UNIX Implementa-
tion’’ The Bell System Technical Journal, vol 57, 1978,
number 6 (part 2) p. 1931ff.

