
Raw data: Interrupt latency measurements.

Poul-Henning Kamp 1

The FreeBSD Project
Revised 1998-07-02

ABSTRACT

This paper presents some raw data on interrupt latency measurements on FreeBSD-current as of
July 2nd 1998.

Objective

The objective of this experiment was to deter-
mine and characterize the interrupt latency in the
FreeBSD kernel when under typical circumstances.

Setup

The experimental setup consist of the following
parts:

Asus TX97 PC(AT) motherboard. This is a Pen-
tium class motherboard of later vintage. Most of the
standard peripherals are integrated onto the mother-
board, for instance IDE/ATA/ATAPI controllers,
floppy disk controller, async serial port and parallel
printer ports.
http://www.asus.com

AMD K6/233 CPU A Pentium compatible CPU.
http://www.amd.com

ISOTemp OCXO-112-13 Ovenized Quartz Crys-
tal Generator. This is a unit for which I do not have
the actual specs. This quality of this unit is not critical
for these measurements.
http://www.isotemp.com

Virtual Computer Corporation "HOT1" repro-
gramable computing device. This device (called a
xrpu) is a PCI bus card which contains a FPGA into
which userdesigned circuits can be programmed. For
this experiment a 22 bit counter and a 22 bit latch
were implemented. The counter runs from at fre-
quency of 90.112 MHz which is derived from the
OCXO signal using a PLL chip on the card.
http://www.vcc.com

Motorola UT Oncore GPS receiver evaluation
kit. This is not really necessary, any source of a low
frequency TTL squarewave would do, but I had this
one wired up already. The high precision of the Pulse-
Per-Second output makes it easier to detect spurious
noise in the dataset.
http://www.mot.com

NCR 810 based SCSI controller, Adaptec 5930
155Mbit/sec UTP5 ATM controller, NE2000

1This work was not sponsored by anybody. Poul-Henning
Kamp was supported by his own daytime job. He would
have loved to do this for some sponsors money instead.

compatible 16bit ISA bus ethernet cardand Quantum
ProDrive 1800S SCSI diskdrives (2) These devices
complete the system.

LPT0:10

GPS

Asus TX97
Motherboard

XRPU OCXO

PPS output

Fig. 1: The hardware setup.

On the software side the computer operated
under Fr eeBSD-current as of 1998/07/02 06:00 UTC,
with an improved driver for the xrpu unit.
http://www.FreeBSD.org

Theory

The system operates using a timecounter which
is implemented in the xrpu device. This timecounter
operates from a very stable frequency of 90.112 MHz
derived from the OCXO. In the xrpu is also imple-
mented a latch which will capture the reading of the
timecounter at the rising edge of an external signal.

The Pulse-Per-Second output from the GPS receiver is
connected to pin 10 on the parallel printer port on the
motherboard and to the latch input on the xrpu unit.

The FreeBSD kernel is configured with the lppps
device-driver, which will record and store a timestamp
for each interrupt on the parallel printerport.

Since this timestamp is constructed from the time-
counter in the xrpu, the timedifference between the
recorded timestamp from the latch in the xrpu and the
lppps driver represents the time it took from the rising
edge of the pin in the parallel printer port until the
FreeBSD kernel had entered the applicable interrupt
service routine plus various systematic delays.



During the run of this experiment a few different loads
were put on the system, in order to get a more repre-
sentative result.

The activity on the machine was:

samples 1-1100: various command-line work.

samples 1100-1500: idle.

samples 1500-2100: "cvs update" from a cvs
repository mounted with NFS over the ATM link.

samples 2100-2500: light command-line work.

samples 2500-4400: "make world"

Results

Figure 2 shows a plot of the data samples gath-
ered.

-10000

0

10000

20000

30000

40000

50000

60000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

na
no

se
co

nd
s

Interrupt latency

Fig. 2: The raw numbers

Figure 3 shows the same data plotted as a his-
togram.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

4000 6000 8000 10000 12000 14000 16000

A
cc

um
ul

at
ed

 fr
eq

ue
nc

y

nanoseconds

Accumulative Interrupt Latency Histogram

Fig. 3: Histogram

Finally Figure 4 shows the same data, this time plotted
as an accumulative histogram.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-10000 0 10000 20000 30000 40000 50000 60000

A
cc

um
ul

at
ed

 fr
eq

ue
nc

y

nanoseconds

Accumulative Interrupt Latency Histogram

Fig. 4: Accumulative Histogram

Conclusion

It is hard to draw any conclusions from the data
at present, which is why this paper has been labeled
raw data in the title.

There is evidently some noise in the data, some of this
may be caused my metastability problems in the
design implemented in the xrpu.

The author is no VHDL wizard, and has probably bro-
ken all applicable rules about multiple clock domains
in the design used. This would be a self-correcting
condition which would simply result in one measure-
ment being wrong. The exact magnitide and fre-
quency of this noise-source has not yet been character-
ized, but other experiments indicate a frequency of
less than one percent.

It is very important to realize that there is a potentially
large systematic error on all the measurements due to
a number of different effects and that it therefore
would be wrong to conclude that four microseconds is
the shortest time possible from stimulus to response
for a FreeBSD kernel.

One of the effects not accounted for is the time it takes
to read the xrpu timecounter (which the lppps0 driver
does) compared to the zero delay of the latch in the
xrpu device. This delay is probably less than 600
nanoseconds.

The parallel printerport is a legacy ISA device, and
despite the fact that it is integrated into the chipset on
the motherboard, it is still connected to the ISA bus.
This is evident from the fencepost pattern in figure 3,
which correspond to a ISA bus frequency of approx 8
MHz.

It is not know if there is any deglitching circuitry in
the implementation of the parallel printerport, if there
is that would probably cause some number of ISA
clock cycles delay before the interrupt is delivered.


