

Lousy virtualization, Happy users:

FreeBSD's jail(2) facility

Poul-Henning Kamp

phk@FreeBSD.org

CHROOT(2) FreeBSD System Calls Manual CHROOT(2)

NAME
 chroot ­­ change root directory

LIBRARY
 Standard C Library (libc, ­lc)

SYNOPSIS
 #include <unistd.h>

 int
 chroot(const char *dirname);

Calling chroot(2) in ftpd(1) implemented
”anonymous FTP” without the hazzle of
file/pathname parsing and editing.

”anonymous FTP” became used as a tool to
enhance network security.

By inference, chroot(2) became seen as a
security enhancing feature.

...The source were not strong in those.

Exercise 1:
List at least four ways to escape chroot(2).

Then the Internet happened,

...and web-servers,

...and web-hosting

Virtual hosts in Apache

User get their own ”virtual apache” but do
do not get your own machine.

Also shared:
Databases
mailprograms
PHP/Perl
etc.

Upgrading tools (PHP, mySQL etc) on virtual
hosting machines is a nightmare.

A really bad nightmare:

Cust#1 needs mySQL version > N
Cust#2 cannot use mySQL version <M

(unless PHP version > K)
Cust#3 does not answer telephone
Cust#4 has new sysadmin
Cust#5 is just about ready with new version

Wanted: Lightweight virtualization

Same kernel, but virtual filesystem and
network address plus root limitations.

Just like chroot(2) with IP numbers on top.

Will pay cash.

Close holes in chroot(2)

Introduce ”jail” syscall + kernel struct

Block jailed root in most suser(9) calls.

Check ”if jail, same jail ?” in strategic places.

Fiddle socket syscall arguments:

INADDR_ANY -> jail.ip
INADDR_LOOPBACK -> jail.ip

Not part of jail(2):

Resource restriction
Hardware virtualization
Covert channel prevention
(the hard stuff)

Total implementation:

350 changed source lines
400 new lines of code

Kernel

processprocess process processprocess process

/

usr

var

home

Resources
of various sorts

FreeBSD without jail

Kernel

processprocess process process*process process

/

usr

var

home

Resources
of various sorts

FreeBSD with jail

error = priv_check_cred(
 cred, PRIV_VFS_LINK,
 SUSER_ALLOWJAIL);
if (error)
 return (error);

The unjailed part
of the system.

Other jailed part
of the system

processes

One jailed part
of the system

Can see

Can see

processes

processes

processes

/

usr

var

home

jail1

jail2

usr

var

home

usr

home

var

First jail

Second jail

fxp0
10.0.0.1

fxp1
192.168.1.1

lo0
127.0.0.1
10.1.0.1
10.1.0.2
10.1.0.3

First jail

Second jail

Corner cases:

pid 1: /sbin/init

/dev/tty

/dev/console

127.0.0.1

0.0.0.0

/var/run/log

named / resolv.conf

Disk Quotas

df(1)

ptys

apache + mysql

postfix + majordomo

apache + PHP + mysql

qmail + apache + frontpage

apache webserver
lousy php scripts

When attacked:
Take computer offline
Boot CD-ROM
Reinstall from backup
Give up finding bug
Restart machine

apache webserver
lousy php scripts

When attacked:
Spy safely on attacker, find bug
Make backup copy of jail/evidence
Nuke jail
Recreate jail from backup
Fix bug
Start jail

apache webserver
lousy php scripts

good
cop
process:

.../webserver_backup.tar

while (1)
if jail contents is OK

sleep 5
else

blow away jail
start new jail

Things people do with jails:

”I don't trust this script”
jail / myhost 127.0.0.1 sh configure

”Only see one of my addresses”
jail / myshost 10.2.3.1 inetd

”Don't talk to anybody at all”
jail / myhost 127.0.0.2 make install

Common mistake in contemporary products:

Only two levels of trust available:

User (= ruin the users files)

Administrator (= ruin the entire system)

Missing:

Untrusted (= don't ruin anything)

Computer Security IgNobel price suggestion:

Windows Vista:

”Programs named setup*.* or install*.*
gets Administrator priviledge.”

What I learned from jail:

People love lousy virtualization!

They want more of it!

I want this process to have virtualized:
□ network

□ Ipv4 □ Ipv6 □ IPX □ RFC1149
□ interfaces
□ routing table
□ sockets

 □ filesystem
____________ [indicate root directory]

□ SYSV-IPC namespace
□ SHM □ MSG □ SEM

□ uid/gid namespace
□ disk quotas
□ process namespace
□ ______________ [other virtualizations]

EuroBSDcon 2007
September 14-15
 Copenhagen

