
Malloc(3) revisited

Poul-Henning Kamp 1

The FreeBSD Project

ABSTRACT

malloc (3) is one of the oldest parts of the C language environment and not surprisingly the
world has changed a bit since it was first conceived. The fact that most UNIX kernels have
changed from swap/segment to virtual memory/page based memory management has not been
sufficiently reflected in the implementations of the malloc/free API.

A new implementation was designed, written, tested and bench-marked with an eye on the
workings and performance characteristics of modern Virtual Memory systems. It works OK.

Introduction

All but the most trivial programs need to allocate
storage dynamically in addition to whatever static
storage the compiler reserved at compile-time. Pro-
gramming languages generally come in three flavours
on this point: those which handle&hide it for the pro-
grammer, those which don’t allow for it and the C
programming language. As with so many other things
the C environment hands the programmer all the raw
bits to play with, and does very little to prevent the
programmer from making mistakes.

A modern UNIX kernel provides three means for
dynamic memory allocation: the execution stack and
the heap, and mmap (2).

The Stack

The stack is usually put at the far upper end of
the address-space, from where it grows down 2 as far
as needed.

text data bss heap stack

increasing addresses

There is no real kernel interface to the stack as
such. The kernel will allocate some amount of mem-
ory for the stack, usually not even telling the process
the exact amount. The process will simply try to
access whatever it needs, expecting the kernel to
detect the access outside the allocated memory and
treat this as a request for extension. If the kernel fails
to extend the stack, either because of lack of
resources, lack of permissions or because it may just
be plain impossible to do in the first place, the process
will usually be shot down by the kernel with a termi-
nal signal.

1This work was not sponsored by anybody. Poul-Henning
Kamp was supported by his own daytime job. He would
have loved to do this for some sponsors money instead.

2A few mostly obsolete CPU designs can be considered an-
tipodic in this respect.

In the C language, there exists a little used inter-
face to the stack, alloca (3), which will explicitly allo-
cate space on the stack. This is not a interface to the
kernel, but an adjustment done to the stack pointer
such that space will be available and unharmed by any
subroutine calls yet to be made while the context of
the current subroutine is intact. As a consequence of
this design, there is no need for an actual "free" opera-
tor. The space is returned auto-magically when the
current function returns and the stack frame is disman-
tled. This asymmetry is the cause of much grief, and
probably the single most important reason that
alloca(3) is not, and should not be, widely used.

mmap (2).

When hardware architectures which provided
paging became available, a new API was added which
gives the programmer detailed control over the indi-
vidual pages in the process 3. The API has two pri-
mary functions mmap (2) and munmap (2) as well as
some auxiliary functions. Unfortunately, most pro-
grams do not allocate memory in page-sized chunks,
so this interface is usually only used in specialised and
system applications. One typical and probably the
most widespread use in terms of number of calls to
this API is shared libraries.

The heap

The heap is an extension of the data segment of
the process, it starts at the end of the bss section and
extends upwards. The storage in the heap area is
explicitly allocated with the system call brk (2). which
takes one argument: a pointer to where the process
wants the heap to end. The libc library also provides a
function layered on top of brk (2) called sbrk (2) which
takes as argument a (signed) increment to the current
end of the heap.

3To the extent the kernel implements this API that is. Not
all kernels implement more than the bare minimum.



The kernel and memory

Brk (2) is a very inconvenient interface, for most
day-to-day uses it is completely impossible to use it.
It is easy to allocate memory with it, but you can only
free it again in a LIFO order. As so many other things
in UNIX, it was probably defined based on what the
kernel had to offer rather than a theoretical study of
what programmers needed.

Before paged and/or virtual memory systems
became common, the memory management facility
used for UNIX was segments. This was also very
often the only available vehicle for imposing protec-
tion on various parts of memory. Depending on the
hardware, segments can be anything, and consequently
how the kernels exploited them varied a lot from
UNIX to UNIX and from machine to machine.

Typically a process would have one segment for
the text section, one for the data and bss section com-
bined and one for the stack. 4

text
data
bss

heap
stack

increasing addresses

In this setup all the brk (2) system call needs to
do is to find the right amount of free storage, possibly
moving things around in physical memory, maybe
ev en swapping out a segment or two to make space,
and change the upper limit on the data segment
according to the address given.

In a more modern page based virtual memory
implementation this is still pretty much the situation,
except that the granularity is now pages. The kernel
finds the right number of free pages, possibly paging
some pages out to free them up, and then plugs them
into the page-table of the process.

Only very few programs deal with the brk (2)
interface directly. The few that do usually have their
own memory management facilities. LISP, MOD-
ULA-3 or FORTH interpreters and runtimes are good
examples. Most other programs use the malloc (3)
interface instead, and leave it to the malloc implemen-
tation to use brk (2) to get storage allocated from the
kernel.

4On some systems the text shared a segment with the data
and bss, and was consequently just as writable as them.
Some people will remember the undocumented way of com-
piling awk (1) programs: given the right option awk (1)
would load and parse the program and then write the address
space from the start of the text to the top of the heap into a
file. Another option read this file back in. This reduced the
startup time because the program was already parsed into in-
ternal form. The initial version of this hack didn’t work on
machines where the text segment could not be written to.
TeX and GNU-emacs are other programs which have used
similar methods for similar reasons.

Malloc(3), realloc(3) and free(3)

The archetypical malloc (3) implementation
keeps track of the memory between the end of the bss
section, as defined by the _end symbol, and the cur-
rent brk (2) point using a linked list of chunks of mem-
ory. Each item on the list has a status as either free or
used, a pointer to the next entry and in most cases to
the previous as well, to speed up inserts and deletes in
the list.

_end _brk
When a malloc (3) request comes in, the list is

traversed from the front and if a free chunk big enough
to hold the request is found, it is returned. If the free
chunk is bigger than the size requested, a new free
chunk is made from the excess and put back on the
list. When a chunk is free (3)’ed, the chunk is found
in the list, its status is changed to free and if one or
both of the surrounding chunks are free, they are col-
lapsed to one.

A third kind of request, realloc (3), will resize a
chunk, trying to avoid copying the contents if possible.
It is seldom used, and has only had a significant
impact on performance in a few special situations.
The typical pattern of use is to malloc (3) a chunk of
the maximum size needed, read in the data and adjust
the size of the chunk to match the size of the data read
using realloc (3), or alternatively, to allocate with
malloc (3) a chunk which can handle a large fraction
of the requests, and if this proves insufficient, reallo-
cating with realloc (3), possibly several times, until the
necessary amount of memory has been obtained.

For reasons of efficiency, the original implemen-
tation of malloc (3) put the small data structure used to
contain the next and previous pointers plus the state of
the chunk right before the chunk itself. As a matter of
fact, the canonical malloc (3) implementation can be
studied in the ‘‘Old testament’’, chapter 8 verse 7 5

Various optimisations can be applied to the
above basic algorithm:

• If when freeing a chunk, we end up with the last
chunk on the list being free, we can return that to the
kernel by calling brk (2)with address of that chunk
and then make the previous chunk the last on the
chain by terminating its ‘‘next’’ pointer.

• A best-fit algorithm can be used instead of first-fit at
an expense of memory, because statistically fewer
chances to brk (2)backwards

• Splitting the list in two, one for used and one for
free chunks, to speed the searching.

• Putting free chunks on one of several free lists,

5Kernighan & Ritchie: The C programming language



depending on their size, to speed allocation.

• &c &c &c

The problems

Even though malloc (3) is a lot simpler to use
than the raw brk (2) interface, or maybe exactly
because of that, a lot of problems arise from its use.

• Writing to memory outside the allocated chunk.

• Freeing a pointer to memory not allocated by mal-
loc.

• Freeing a modified pointer.

• Freeing the same pointer more than once.

• Accessing memory in a chunk after it has been
free (3)’ed.

The handling of these problems have tradition-
ally been weak. A core-dump was the most common
form for ‘‘handling’’, but in rare cases one could expe-
rience the famous ‘‘malloc: corrupt arena.’’, or simi-
larly informative messages right before the core dump.
Much worse though, very often the program will just
continue, quite possibly giving wrong results or weird
behaviour.

An entirely different kind of problem is normal
sloppy thinking: The manual pages clearly state the
memory returned by malloc (3) can contain any value,
and that one should explicitly initialise the memory
before use. Unfortunately most kernels, correctly so,
zero out the storage they provide with brk (2) for secu-
rity reasons, and thus the storage malloc (3) return
happen to be zeroed in many cases as well, so pro-
grammers are not particular apt to notice that their
code depends on malloc’ed storage being zero.

Malloc (3) has somewhat deserved the reputation
it has gotten for being the first of ‘‘the usual suspects’’
to round up when programs act weird.

Alternative implementations

Detecting some or all of these problems was the
inspiration for the first alternative malloc implementa-
tions. Since their main aim was debugging, they
would often use techniques like allocating a guard
zone before and after the chunk, usually filling these
guard zones with some known predictable pattern6, so
that write accesses outside the allocated chunk could
be detected as changes to these patterns with some
decent probability. Another widely used technique is
to use tables to keep track of which chunks are actu-
ally in which state and so on.

This class of debugging has been taken to its
practical extreme by the product ‘‘Purify’’ which does
the entire memory-colouring exercise and not only
keeps track of what is and what isn’t in use, but also

6Amongst the many creative patterns are 0xDEADBEEF,
0xCOFEBABE, 0xDEADDEAD and so on.

detects if the first reference is a read (which would
return undefined values) and other such violations.
Purify is a commercial product of high quality and
priced to reflect this.

Later actual complete alternative implementa-
tions of malloc arrived, but many of these as well as
the code which sat comfortably in the libc library of
FreeBSD, still based their workings on the basic
schema mentioned previously, oblivious to the fact
that in the meantime virtual memory and paging have
become the standard environment rather than seg-
ments.

The most widely used ‘‘alternative’’ malloc is
undoubtedly ‘‘gnumalloc’’ which has received wide
acclaim and certainly runs faster than most stock mal-
locs. It does, however, just like most other malloc
implementations, have a tendency to fare badly in
cases where paging is the norm rather than the excep-
tion.

The particular malloc that prompted this work
basically didn’t bother reusing storage until the kernel
forced it to do so by refusing further allocations with
sbrk (2). That may make sense if you work alone on
your own personal mainframe, but as a general policy
it is much less than optimal.

In order to select a candidate amongst the vari-
ous available free implementations of malloc, I tried to
benchmark them from end to other. This was done on
a tiny laptop with only 8MB of RAM 7, and it soon
transpired that as soon as RAM was over-committed
things went downhill very fast. This prompted me to
study what ‘‘performance’’ meant for a malloc imple-
mentation.

Performance

Performance for a malloc (3) has two sides:

A) How much time does it use for searching and
manipulating data structures. We will refer to this
as ‘‘overhead’’.

B) How well does it manage the storage. This rather
vague metric we call ‘‘quality of allocation’’.

The overhead is easy to measure: Just do a lot of
malloc/free calls of various kinds and combination,
and compare the results. This is unfortunately the
most common basis for systematic comparison of mal-
loc implementations. I say ‘‘unfortunately’’ because it
should be obvious to anybody that if you can save just
one disk access, you can do almost anything you like
to your internal data structures for several millisec-
onds and still come out being faster in the end. To
compound this oversight, most people who have com-
pared malloc implementations have done so on sys-
tems where RAM was not over-committed, and conse-
quently the implementations abilities in this area have

7A ‘‘GateWay 2000 Handbook’’, too bad they don’t make
them anymore.



not been measured.

The "quality of allocation" metric tries to mea-
sure this aspect. It is actually horribly complex to
measure. In fact, the only manageable way to measure
it is to run some complex and deterministic test cases
on a system where RAM is over-committed, measure
the time it took and use that as the metric.

To design an algorithm on the other hand, an
analytical attack is needed. Here is the one I used in
the design of my malloc implementation:

One indicator of this quality is the size of the
process, that should obviously be minimised. Another
indicator is the execution time of the process. This is
not an obvious indicator of quality for malloc, but
people will generally agree that it should be min-
imised as well, and if malloc (3), as we will see
shortly, can do anything to do so, it should.

In a traditional segment/swap kernel, because the
entire process will either be swapped out to disk or be
resident in RAM, the desirable behaviour of a process
is to keep the brk (2) point as low as possible, thus
minimising the size of the data/bss/heap segment,
which in turn translates to a smaller process and a
smaller probability of the process being swapped out.
QED: faster execution time as an average.

In a paging environment this is not a bad choice
for a default, but a couple of details needs to be looked
at much more carefully. First of all, the size of a pro-
cess becomes a more vague concept since only the
pages that are actually used need to be in primary stor-
age for execution to progress, and they only need to be
there when used. That implies that many more pro-
cesses can fit in the same amount of primary storage,
since most processes have a high degree of locality of
reference and thus only need some fraction of their
pages to actually do their job. From this it follows that
the interesting size of the process is a subset of the
total amount of virtual memory occupied by the pro-
cess. This subset isn’t a constant. It varies depending
on the whereabouts of the process, and it may indeed
fluctuate wildly over the lifetime of the process.

One of the names for this vague concept is ‘‘cur-
rent working set’’. This is a most horribly ill-defined
number, but for now we can simply say that it is the
number of pages the process needs in order to run at a
acceptable low paging rate in a congested primary
storage. If the number of pages is too small, the pro-
cess will wait for its pages to be read from secondary
storage much of the time. If it’s too big, the space
could be used better for something else. If primary
storage isn’t congested, this may not seem important.
But many kernels today can use any available pages
for disk-cache or similar functions, so from that per-
spective main storage is always congested.

From the view of any single process, this number
of pages is of course ‘‘all of my pages’’, since this
guarantees that no pages will need to be paged in or

out. From the point of view of the OS it should be
tuned to maximise the total throughput of all the pro-
cesses running on the machine at that time. This is
usually done using various kinds of least-recently-
used replacement algorithms to select page candidates
for replacement.

With this miniature analysis, we can define the
performance goals for a modern malloc (3) implemen-
tation as: Minimise the number of pages accessed.

This really is the core of it all. If the number of
accessed pages is smaller, then locality of reference is
higher, and all kinds of caches (which is essentially
what the primary storage in a VM system is) work bet-
ter.

It’s interesting to notice that the classical malloc,
and most of the alternatives available, fail decisively
according to this criteria. The information about free
chunks is kept in the free chunks themselves. In other
words, even though the application as such do not
need these chunks of memory, the malloc implementa-
tion still does, and consequently those pages if paged
out, will not stay there longer than till the next call to
malloc (3) or free (3) needs to traverse the free-list.

In some of the benchmarks this came out as all
the pages being paged in every time a malloc call was
made. This made as much difference as a factor of
five in wall-clock time for certain scenarios.

The secondary goal is more evident: Try to
work in pages. That makes it easier for the kernel,
and wastes less virtual memory. Most modern imple-
mentations do this when they interact with the kernel,
but only a few try to avoid objects spanning pages.

If an object’s size is less than or equal to a page,
there is no reason for it to span two pages. Having
objects span pages means that two pages must be
paged in, if that object is accessed.

Implementation

The implementation is 1136 lines of C code, and
can be found in FreeBSD 2.2 and later versions of
FreeBSD as src/lib/libc/stdlib/malloc.c.

The main data structure is the page-directory
which contains a void* for each page we have control
over. The value can be one of:

• MALLOC_NOT_MINE Another part of the code
may call brk (2) to get a piece of the cake. Conse-
quently, we cannot rely on the memory we get from
the kernel being one consecutive piece of memory,
and therefore we need a way to mark such pages as
"untouchable".

• MALLOC_FREE This is a free page.

• MALLOC_FIRST This is the first page in a
(multi-)page allocation.

• MALLOC_FOLLOW This is a subsequent page in a
multi-page allocation.

• struct pginfo* A pointer to a structure describing a



partitioned page.

In addition, there exists a linked list of small data
structures that describe the free space as runs of free
pages.

Notice that these structures are not part of the
free pages themselves, but rather allocated with malloc
so that the free pages themselves are never referenced
while they are free.

When a request for storage comes in, it will be
treated as a ‘‘page’’ allocation if it is bigger than half a
page. The free list will be searched and the first run of
free pages that can satisfy the request is used. The
first page gets set to MALLOC_FIRST status. If more
than that one page is needed, the rest of them get
MALLOC_FOLLOW status in the page-directory.

If there were no pages on the free list, brk (2)
will be called, and the pages will get added to the
page-directory with status MALLOC_FREE and the
search restarts.

Freeing an allocation of pages is done by chang-
ing their state in the page directory to MALLOC_FREE,
traversing the free-pages list to find the right place for
this run of pages, collapsing with either or both of the
two neighbouring entries if possible, and if above the
threshold: releasing some pages back to the kernel by
calling brk (2).

If the request is less than or equal to half of a
page, its size will be rounded up to the nearest power
of two before being processed and if the request is less
than some minimum size, it is rounded up to that size.

These sub-page allocations are served from
pages which are split up into some number of equal
size chunks. For each of these pages a struct pginfo
describes the size of the chunks on this page, how
many there are, how many are free and so on. The
description consist of a bitmap of used chunks, and
various counters and numbers used to keep track of
the stuff in the page.

For each size of sub-page allocation, the pginfo
structures for the pages that have free chunks in them
form a list. The heads of these lists are stored in pre-
determined slots at the beginning of the page directory
to make access fast.

To allocate a chunk of some size, the head of the
list for the corresponding size is examined, and a free
chunk found. The number of free chunks on that page
is decreased by one and, if zero, the pginfo structure is
unlinked from the list.

To free a chunk, the page is derived from the
pointer, the pginfo info structure found from the page
directory and the bit corresponding to this chunk is set
in the bitmap, and the counter for free chunks is
increased by one. If this page has exactly one free
chunk now, it is linked back into the list for chunks of
this size, if all chunks are free both the page and the
pginfo structure are free (3)’ed too.

To be 100% correct performance-wise these lists
should be ordered according to the recent number of
accesses to that page. This information is not avail-
able and it would essentially mean a reordering of the
list on every memory reference to keep it up-to-date.
Instead they are ordered according to the address of
the pages. Other criteria has been tried and it looks
like any kind of stable and repeatable sorting of these
result in the same performance. Sorting by address
statistically keeps. brk (2) as lower.

It is an interesting twist to the implementation
that the struct pginfo Is allocated with malloc. That
is, "as with malloc" to be painfully correct. The code
knows the special case where the first (couple) of allo-
cations on the page is actually the pginfo structure and
deals with it accordingly. This avoids some silly
"chicken and egg" issues.

Bells and whistles.

brk (2) is actually not a very fast system call
when you ask for storage. This is mainly because of
the need for the kernel to zero the pages before hand-
ing them over. Therefore this implementation does
not release heap pages until there is a large chunk to
release back to the kernel. Chances are pretty good
that we will need it again pretty soon anyway. Since
these pages are not accessed at all, they will soon be
paged out and don’t affect anything but swap-space
usage.

The page directory is actually kept in a
mmap (2)’ed piece of anonymous memory. This
avoids some rather silly cases that would otherwise
have to be handled when the page directory has to be
extended.

One particularly nice feature is that all pointers
passed to free (3) and realloc (3) can be checked con-
clusively for validity. First the pointer is masked to
find the page. The page directory is then examined, it
must contain either MALLOC_FIRST, in which case
the pointer must point exactly at the page, or it can
contain a struct pginfo*, in which case the pointer
must point to one of the chunks described by that
structure. Warnings will be printed on stderr and
nothing will be done with the pointer if it is found to
be invalid.

An environment variable MALLOC_OPTIONS
allows the user some control over the behaviour of
malloc. Some of the more interesting options are:

Abort If malloc fails to allocate storage, core-
dump the process with a message rather than
expect it to handle this correctly.

Hint Pass a hint to the kernel about pages we no
longer need using the madvise (2) system call.
This allows the kernel to discard the contents of
the page and reuse it as free. If this process
accesses that page later on, the kernel can just map
a new page into the address space. This can



improve performance a fair bit in certain applica-
tions since it has the potential to save a page-out
and a page-in operation.

Realloc Always do a free and malloc when
realloc (3) is called. For programs doing garbage
collection using realloc (3), this make the heap col-
lapse faster since malloc will reallocate from the
lowest available address. The default is to leave
things alone if the size of the allocation is still in
the same size-bracket.

Junk will explicitly fill the allocated area with a
particular value to try to detect if programs rely on
it being zero. The value used, 0xd0, is selected to
maximize the probability of a coredump.

Zero will explicitly zero out the allocated chunk of
memory, while any space after the allocation in the
chunk will be filled with the junk value to try to
detect out of the chunk references.

sys-V quite to my surprise there were one bit of
the API which were not well agreed upon. What
should realloc (3) return when given a pointer and
a new size of zero ? Well, some people expect it to
return a NULL pointer, which makes sense, and
some people expect it to return a valid pointer,
which also makes sense. This option lets the pro-
grammer choose.

All these and a few other options can also be set
in a system-wide fashion, or at compile time. They
have proved very popular with developers, and users
alike, and in particular the ’H’ option can have a deci-
sive performance impact.

Future improvements

It is not obvious that having the free-page list is
an actual benefit, it may be equally fast to just search
for free pages in the page directory.

Truly transient programs like echo (1), date (1)
and similar shouldn’t bother with malloc/free, they
should simply use sbrk (2) for their needs. Maybe a
grace period should be implemented in malloc (3) so
serious memory management would only start after a
certain number of chunks or bytes have actually been
freed back.

Universally huge improvements in performance
in the future seems unlikely unless the malloc (3) API
is changed significantly. But doing so is by no means
a guarantee of better performance. The main stum-
bling block is that it is not possible for the malloc (3)
implementation to relocate in-use memory to improve
locality of reference.

This is not the same as to say that a few pro-
grams out there could not use a better and more intelli-
gent memory allocation policy.

Conclusion and experience.

In general the performance differences between
gnumalloc and this malloc are not that big. The major
difference comes when primary storage is seriously
over-committed, and gnumalloc wastes time paging in
pages it’s not going to really use, in such cases as
much as a factor of five in time has been observed for
various programs.

Several legacy programs in the BSD 4.4 Lite dis-
tribution had code that depended on the memory
returned from malloc being zeroed. In a couple of
cases, free(3) was called more than once for the same
allocation, and a few cases even called free(3) with
pointers to objects in the data section or on the stack.

A couple of users have reported that using this
malloc on other platforms yielded "pretty impressive
results", but no hard benchmarks have been made.

Acknowledgements & references.

The first implementation of this algorithm was
actually a file system, done in assembler using 5-hole
‘‘Baudot’’ paper tape for a drum storage device
attached to a 20 bit germanium transistor computer
with 2000 words of memory, but that was many years
ago.

A lot of people have provided ideas, bug-fixes
and portability changes to the code. Special thanks
and mention goes to: Peter Wemm, Lars Fredriksen,
Keith Bostic, Dmitrij Tejblum, John-Mark Gurney,
Joel Maslak, John Birrell, Warner Losh, Kaleb
Keithly, Mike Pritchard, John D. Polstra and Archie
Cobbs.


