
Timecounters: Efficient and precise timekeeping in SMP kernels.

Poul-Henning Kamp
The FreeBSD Project

ABSTRACT

The FreeBSD timecounters are an architecture-independent implementation of a binary
timescale using whatever hardware support is at hand for tracking time. The binary timescale
converts using simple multiplication to canonical timescales based on micro- or nano-seconds
and can interface seamlessly to the NTP PLL/FLL facilities for clock synchronisation.
Timecounters are implemented using lock-less stable-storage based primitives which scale
efficiently in SMP systems. The math and implementation behind timecounters will be detailed
as well as the mechanisms used for synchronisation.

Introduction

Despite digging around for it, I have not been
able to positively identify the first computer which
knew the time of day. The feature probably
arrived either from the commercial side so service
centres could bill computer cycles to customers or
from the technical side so computers could times-
tamp external events, but I have not been able to
conclusively nail the first implementation down.

But there is no doubt that it happened very early in
the development of computers and if systems like
the ‘‘SAGE’’ [SAGE] did not know what time it
was I would be amazed.

On the other hand, it took a long time for a real
time clock to become a standard feature:

The ‘‘Apple][’’ computer had neither in hardware
or software any notion what time it was.

The original ‘‘IBM PC’’ did know what time it
was, provided you typed it in when you booted it,
but it forgot when you turned it off.

One of the ‘‘advanced technologies’’ in the ‘‘IBM
PC/AT’’ was a battery backed CMOS chip which
kept track of time even when the computer was
powered off.

Today we expect our computers to know the time,
and with network protocols like NTP we will usu-
ally find that they do, give and take some millisec-
onds.

This article is about the code in the FreeBSD ker-
nel which keeps track of time.

Time and timescale basics

Despite the fact that time is the physical
quantity (or maybe entity ?) about which we know
the least, it is at the same time [sic!] what we can
measure with the highest precision of all physical
quantities.

The current crop of atomic clocks will neither gain
nor loose a second in the next couple hundred

million years, provided we stick to the preventative
maintenance schedules. This is a feat roughly in
line with to knowing the circumference of the
Earth with one micrometer precision, in real time.

While it is possible to measure time by means
other than oscillations, for instance transport or
consumption of a substance at a well-known rate,
such designs play no practical role in time mea-
surement because their performance is signifi-
cantly inferior to oscillation based designs.

In other words, it is pretty fair to say that all rele-
vant timekeeping is based on oscillating phenom-
ena:

sun-dial Earths rotation about its axis.
calendar Ditto + Earths orbit around the sun.
clockwork Mechanical oscillation of pendulum.
crystals Mechanical resonance in quartz.
atomic Quantum-state transitions in atoms.

We can therefore with good fidelity define ‘‘a
clock’’ to be the combination of an oscillator and a
counting mechanism:

Oscillator + Counter = Clock

1 0 3 7 5 4 2 5 0 0

The standard second is currently defined as

The duration of 9,192,631,770 periods of the
radiation corresponding to the transition
between the two hyperfine levels of the ground
state of the caesium 133 atom.

and we have frequency standards which are able to
mark a sequence of such seconds with an error less
than 2 ⋅ 10−15 [DMK2001] with commercially
available products doing better than 1 ⋅ 10−14

[AG2002].

Unlike other physical units with a conventionally
defined origo, longitude for instance, the

ephemeral nature of time prevents us from putting
a stake in the ground, so to speak, and measure
from there. For measuring time we have to rely on
‘‘dead reckoning’’, just like the navigators before
Harrison built his clocks [RGO2002]: We hav e to
tally how far we went from our reference point,
keeping a running total at all times, and use that as
our estimated position.

The upshot of this is, that we cannot define a
timescale by any other means than some other
timescale(s).

‘‘Relative time’’ is a time interval between two
ev ents, and for this we only need to agree on the
rate of the oscillator.

‘‘Absolute time’’ consists of a well defined point in
time and the time interval since then, this is a bit
more tricky.

The Internationally agreed upon TAI and the UTC
timescales starts at (from a physics point of view)
arbitrary points in time and progresses in integral
intervals of the standard second, with the differ-
ence being that UTC does tricks to the counting to
stay roughly in sync with Earths rotation 1.

TAI is defined as a sequence of standard seconds
(the first timescale), counted from January 1st
1958 (the second timescale).

UTC is defined basically the same way, but every
so often a leap-second is inserted (or theoretically
deleted) to keep UTC synchronised with Earths
rotation.

Both the implementation of these two, and a few
others speciality timescales are the result of the
combined efforts of several hundred atomic fre-
quency standards in various laboratories and insti-
tutions throughout the world, all reporting to the
BIPM in Paris who calculate the ‘‘paper clock’’
which TAI and UTC really are using a carefully
designed weighting algorithm 2.

1The first atomic based definition actually operated in a
different way: each year would have its own value deter-
mined for the frequency of the caesium resonance, se-
lected so as to match the revolution rate of the Earth.
This resulted in time-intervals being very unwieldy busi-
ness, and more and more scientists realized that that the
caesium resonance was many times more stable than the
angular momentum of the Earth. Eventually the new
leap-second method were introduced in 1972. It is inter-
esting to note that the autumn leaves falling on the
northern hemisphere affects the angular momentum
enough to change the Earths rotational rate measurably.

2The majority of these clocks are model 5071A from
Agilent (the test and measurement company formerly
known as ‘‘Hewlett-Packard’’) which count for as much
as 85% of the combined weight. A fact the company de-
servedly is proud of. The majority of the remaining
weight is assigned to a handful of big custom-design
units like the PTB2 and NIST7.

Leap seconds are typically announced six to nine
months in advance, based on precise observations
of median transit times of stars and VLBI radio
astronomy of very distant quasars.

The perceived wisdom of leap-seconds have been
gradually decreasing in recent years, as devices
and products with built-in calendar functionality
becomes more and more common and people real-
ize that user input or software upgrades are neces-
sary to instruct the calendar functionality about
upcoming leap seconds.

UNIX timescales

UNIX systems use a timescale which pre-
tends to be UTC, but defined as the count of stan-
dard seconds since 00:00:00 01-01-1970 UTC,
ignoring the leap-seconds. This definition has
never been perceived as wise.

Ignoring leap seconds means that unless some
trickery is performed when a leap second happens
on the UTC scale, UNIX clocks would be one sec-
ond off. Another implication is that the length of a
time interval calculated on UNIX time_t variables,
can be up to 22 (and counting) seconds wrong rel-
ative to the same time interval measured on the
UTC timescale.

Recent efforts have tried to make the NTP protocol
make up for this deficiency by transmitting the
UTC-TAI offset as part of the protocol.
[MILLS2000A]

Fractional seconds are represented two ways in
UNIX, ‘‘timeval’’ and ‘‘timespec’’. Both of these
formats are two-component structures which
record the number of seconds, and the number of
microseconds or nanoseconds respectively.

This unfortunate definition makes arithmetic on
these two formats quite expensive to perform in
terms of computer instructions:

/* Subtract timeval from timespec */
t3.tv_sec = t1.tv_sec - t2.tv_sec;
t3.tv_nsec = t1.tv_nsec -

t2.tv_usec * 1000;
if (t3.tv_nsec >= 1000000000) {

t3.tv_sec++;
t3.tv_nsec -= 1000000000;

} else if (t3.tv_nsec < 0) {
t3.tv_sec--;
t3.tv_nsec += 1000000000;

}

While nanoseconds will probably be enough for
most timestamping tasks faced by UNIX comput-
ers for a number of years, it is an increasingly
uncomfortable situation that CPU clock periods
and instruction timings are already not repre-
sentable in the standard time formats available on
UNIX for consumer grade hardware, and the first
POSIX mandated API, clock_getres(3) has

already effectively reached end of life as a result of
this.

Hopefully the various standards bodies will
address this issue better in the future.

Precision, Stability and Resolution

Three very important terms in timekeeping
are ‘‘precision’’, ‘‘stability’’ and ‘‘resolution’’.
While the three words may seem to describe some-
what the same property in most uses, their use in
timekeeping covers three very distinct and well
defined properties of a clock.

Resolution in clocks is simply a matter of the step-
size of the counter or in other words: the rate at
which it steps. A counter running on a 1 MHz fre-
quency will have a resolution of 1 microsecond.

Precision talks about how close to the intended
rate the clock runs, stability about how much the
rate varies and resolution about the size of the
smallest timeinterval we can measure.

From a quality point of view, Stability is a much
more valuable property than precision, this is prob-
ably best explained using a graphic illustration of
the difference between the two concepts:

Imprecise

U
ns

ta
bl

e
St

ab
le

Precise

In the top row we hav e instability, the bullet holes
are spread over a large fraction of the target area.
In the bottom row, the bullets all hit in a very small
area.

On the left side, we have lack of precision, the
holes obviously are not centred on the target, a sys-
tematic offset exists. In the right side we have pre-
cision, the bullets are centred on the target 3.

3We cannot easily get resolution into this analogy, the
obvious representation as the diameter of the bullet-hole
is not correct, it would have to be the grid or other pat-
tern of locations where the bullet could possibly pene-
trate the target material, but this gets too quantum-me-
chanical-oid to serve the instructional purpose.

Transposing these four targets to actual clocks, the
situation could look like the following plots:

Imprecise

U
ns

ta
bl

e
St

ab
le

Precise

On the x-axis we have time and on the y-axis how
wrong the clock was at a given point in time.

The reason atomic standards are such a big deal in
timekeeping is that they are incredibly stable: they
are able to generate an oscillation where the period
varies by roughly a millionth of a billonth of a sec-
ond in long term measurements.

They are in fact not nearly as precise as they are
stable, but as one can see from the graphic above, a
stable clock which is not precise can be easily cor-
rected for the offset and thus calibrated is as good
as any clock.

This lack of precision is not necessarily a flaw in
these kinds of devices, once you get into the
10 ⋅ 10−15 territory things like the blackbody spec-
trum at the particular absolute temperature of the
clocks hardware and general relativistic effects
mostly dependent on the altitude above earths cen-
ter has to be corrected for 4.

Design goals of timecounters

After this brief description of the major fea-
tures of the local landscape, we can look at the
design goals of timecounters in detail:

Provide timestamps in timeval and timespec for-
mats,

This is obviously the basic task we have to
solve, but as was noted earlier, this is in no way
the performance requirement.

on both the ‘‘uptime’’ and the POSIX timescales,

The ‘‘uptime’’ timescale is convenient for time

4This particularly becomes an issue with space-based
atomic standards as those found on the ‘‘Navstar’’ GPS
satellites.

intervals which are not anchored in UTC time:
the run time of processes, the access time of
disks and similar.

The uptime timescale counts seconds starting
from when the system is booted. The
POSIX/UTC timescale is implemented by
adding an estimate of the POSIX time when
the system booted to the uptime timescale.

using whatever hardware we have available at the
time,

Which in a subtle way also implies ‘‘be able to
switch from one piece of hardware to another
on the fly’’ since we may not know right up
front what hardware we have access to and
which is preferable to use.

while supporting time the NTP PLL/FLL discipline
code,

The NTP kernel PLL/FLL code allows the
local clock and timescale to be synchronised or
syntonised to an external timescale either via
network packets or hardware connection. This
also implies that the rate and phase of the
timescale must be manoeuvrable with sufficient
resolution.

and providing support for the RFC 2783 PPS API,

This is mainly for the benefit of the NTPD dae-
mons communication with external clock or
frequency hardware, but it has many other
interesting uses as well [PHK2001].

in a SMP efficient way.

Timestamps are used many places in the kernel
and often at pretty high rate so it is important
that the timekeeping facility does not become a
point of CPU or lock contention.

Timecounter timestamp format.

Choosing the fundamental timestamp format
for the timecounters is mostly a question of the
resolution and steer-ability requirements.

There are two basic options on contemporary hard-
ware: use a 32 bit integer for the fractional part of
seconds, or use a 64 bit which is computationally
more expensive.

The question therefore reduced to the somewhat
simpler: can we get away with using only 32 bit ?

Since 32 bits fractional seconds have a resolution
of slightly better than quarter of a nanosecond
(.2328 nsec) it can obviously be converted to
nanosecond resolution struct timespec timestamps
with no loss of precision, but unfortunately not
with pure 32 bit arithmetic as that would result in
unacceptable rounding errors.

But timecounters also need to represent the clock
period of the chosen hardware and this hardware
might be the GHz range CPU-clock. The list of

clock frequencies we could support with 32 bits
are:

232/1 = 4.294 GHz
232/2 = 2.147 GHz
232/3 = 1.432 GHz
...
232/(232 − 1) = .999 Hz

We can immediately see that 32 bit is insufficient
to faithfully represent clock frequencies even in
the low GHz area, much less in the range of fre-
quencies which have already been vapourwared by
both IBM, Intel and AMD. QED: 32 bit fractions
are not enough.

With 64 bit fractions the same table looks like:

264/1 = 18. 45 ⋅ 109 GHz
264/2 = 9. 223 ⋅ 109 GHz
...
264/232 = 4.294 GHz
...
264/(264 − 1) = .999 Hz

And the resolution in the 4 GHz frequency range is
approximately one Hz.

The following format have therefore been chosen
as the basic format for timecounters operations:

struct bintime {
time_t sec;
uint64_t frac;

};

Notice that the format will adapt to any size of
time_t variable, keeping timecounters safely out of
the ‘‘We SHALL prepare for the Y2.038K prob-
lem’’ war zone.

One beauty of the bintime format, compared to the
timeval and timespec formats is that it is a binary
number, not a pseudo-decimal number. If compil-
ers and standards allowed, the representation
would have been ‘‘int128_t’’ or at least ‘‘int96_t’’,
but since this is currently not possible, we have to
express the simple concept of multiword addition
in the C language which has no concept of a
‘‘carry bit’’.

To add two bintime values, the code therefore
looks like this 5:

uint64_t u;

u = bt1->frac;
bt3->frac = bt1->frac + bt2->frac;
bt3->sec = bt1->sec + bt2->sec;
if (u > bt3->frac)

bt3->sec += 1;

5If the reader suspects the ’>’ is a typo, further study is
suggested.

An important property of the bintime format is that
it can be converted to and from timeval and time-
spec formats with simple multiplication and shift
operations as shown in these two actual code frag-
ments:

void
bintime2timespec(struct bintime *bt,

struct timespec *ts)
{

ts->tv_sec = bt->sec;
ts->tv_nsec =

((uint64_t)1000000000 *
(uint32_t)(bt->frac >> 32)) >> 32;

}

void
timespec2bintime(struct timespec *ts,

struct bintime *bt)
{

bt->sec = ts->tv_sec;
/* 18446744073 =

int(2ˆ64 / 1000000000) */
bt->frac = ts->tv_nsec *

(uint64_t)18446744073LL;
}

How timecounters work

To produce a current timestamp the time-
counter code reads the hardware counter, subtracts
a reference count to find the number of steps the
counter has progressed since the reference times-
tamp. This number of steps is multiplied with a
factor derived from the counters frequency, taking
into account any corrections from the NTP
PLL/FLL and this product is added to the refer-
ence timestamp to get a timestamp.

This timestamp is on the ‘‘uptime’’ time scale, so
if UNIX/UTC time is requested, the estimated time
of boot is added to the timestamp and finally it is
scaled to the timeval or timespec if that is the
desired format.

A fairly large number of functions are provided to
produce timestamps, depending on the desired
timescale and output format:

Desired uptime UTC/POSIX
Format timescale timescale
bintime binuptime() bintime()
timespec nanouptime() nanotime()
timeval microuptime() microtime()

Some applications need to timestamp events, but
are not particular picky about the precision. In
many cases a precision of tenths or hundreds of
seconds is sufficient.

A very typical case is UNIX file timestamps:
There is little point in spending computational
resources getting an exact nanosecond timestamp,
when the data is written to a mechanical device
which has several milliseconds of unpredictable
delay before the operation is completed.

Therefore a complementary shadow family of
timestamping functions with the prefix ‘‘get’’ hav e
been added.

These functions return the reference timestamp
from the current timehands structure without going
to the hardware to determine how much time has
elapsed since then. These timestamps are known
to be correct to within rate at which the periodic
update runs, which in practice means 1 to 10 mil-
liseconds.

Timecounter math

The delta-count operation is straightforward sub-
traction, but we need to logically AND the result
with a bit-mask with the same number (or less)
bits as the counter implements, to prevent higher
order bits from getting set when the counter rolls
over:

∆Count = (Countnow − Countref) BITAND mask

The scaling step is straightforward.

Tnow = ∆Count ⋅ Rcounter + Tref

The scaling factor Rcounter will be described below.

At regular intervals, scheduled by hard-
clock(), a housekeeping routine is run which
does the following:

A timestamp with associated hardware counter
reading is elevated to be the new reference time-
count:

∆Count = (Countnow − Countref) BITAND mask

Tnow = ∆Count ⋅ Rcounter

Countref = Countnow

Tref = Tnow

If a new second has started, the NTP processing
routines are called and the correction they return
and the counters frequency is used to calculate the
new scaling factor Rcounter :

Rcounter =
264

Freqcounter
⋅ RNTP

Since we only have access to 64 bit arithmetic,
dividing something into 264 is a problem, so in the
name of code clarity and efficiency, we sacrifice
the low order bit and instead calculate:

Rcounter = 2 ⋅
263

Freqcounter
⋅ RNTP

The RNTP correct factor arrives as the signed num-
ber of nanoseconds (with 32 bit binary fractions)
to adjust per second. This quasi-decimal number
is a bit of a square peg in our round binary hole,
and a conversion factor is needed. Ideally we want
to multiply this factor by:

264

109 ⋅ 232
= 4. 294967296

This is not a nice number to work with. Fortu-
nately, the precision of this correction is not criti-
cal, we are within an factor of a million of the
10−15 performance level of state of the art atomic
clocks, so we can use an approximation on this
term without anybody noticing.

Deciding which fraction to use as approximation
needs to carefully consider any possible overflows
that could happen. In this case the correction may
be as large as ± 5000 PPM which leaves us room
to multiply with about 850 in a multiply-before-
divide setting. Unfortunately, there are no good
fractions which multiply with less than 850 and at
the same time divide by a power of two, which is
desirable since it can be implemented as a binary
shift instead of an expensive full division.

A divide-before-multiply approximation necessar-
ily results in a loss of lower order bits, but in this
case dividing by 512 and multiplying by 2199
gives a good approximation where the lower order
bit loss is not a concern:
2199

512
= 4. 294921875

The resulting error is an systematic under compen-
sation of 10.6PPM of the requested change, or
1. 06 ⋅ 10−14 per nanosecond of correction. This is
perfectly acceptable.

Putting it all together, including the one bit we put
on the alter for the Goddess of code clarity, the for-
mula looks like this:

Rcounter = 2 ⋅
263 + 2199 ⋅

RNTP

1024
Freqcounter

Presented here in slightly unorthodox format to
show the component arithmetic operations as they
are carried out in the code.

Frequency of the periodic update

The hardware counter should have a long
enough period, ie, number of distinct counter val-
ues divided by frequency, to not roll over before
our periodic update function has had a chance to
update the reference timestamp data.

The periodic update function is called from
hardclock() which runs at a rate which is con-
trolled by the kernel parameter HZ.

By default HZ is 100 which means that only hard-
ware with a period longer than 10 msec is usable.
If HZ is configured higher than 1000, an internal
divider is activated to keep the timecounter peri-
odic update running no more often than 2000 times
per second.

Let us take an example: At HZ=100 a 16 bit
counter can run no faster than:

216 ⋅ 100Hz = 6. 5536MHz

Similarly, if the counter runs at 10MHz, the mini-
mum HZ is

10MHz

216
= 152. 6Hz

Some amount of margin is of course always advis-
able, and a factor two is considered prudent.

Locking, lack of ...

Provided our hardware can be read atomi-
cally, that our arithmetic has enough bits to not roll
over and that our clock frequency is perfectly, or at
least sufficiently, stable, we could avoid the peri-
odic update function, and consequently disregard
the entire issue of locking. We are seldom that
lucky in practice.

The straightforward way of dealing with meta data
updates is to put a lock of some kind on the data
and grab hold of that before doing anything. This
would however be a very heavy-handed approach.
First of all, the updates are infrequent compared to
simple references, second it is not important which
particular state of meta data a consumer gets hold
of, as long as it is consistent: as long as the
Countref and Tref are a matching pair, and not old
enough to cause an ambiguity with hardware
counter rollover, a valid timestamp can be derived
from them.

A pseudo-stable-storage with generation count
method has been chosen instead. A ring of ten
‘‘timehands’’ data structures are used to hold the
state of the timecounter system, the periodic
update function updates the next structure with the
new reference data and scaling factor and makes it
the current timehands.

The beauty of this arrangement lies in the fact that
ev en though a particular ‘‘timehands’’ data struc-
ture has been bumped from being the ‘‘currents
state’’ by its successor, it still contains valid data
for some amount of time into the future.

Therefore, a process which has started the times-
tamping process but suffered an interrupt which
resulted in the above periodic processing can con-
tinue unaware of this afterwards and not suffer cor-
ruption or miscalculation even though it holds no
locks on the shared meta-data.

*volatile timehands;
struct timehands

This scheme has an inherent risk that a process
may be de-scheduled for so long time that it will
not manage to complete the timestamping process
before the entire ring of timehands have been recy-
cled. This case is covered by each timehand hav-
ing a private generation number which is temporar-
ily set to zero during the periodic processing, to
mark inconsistent data, and incremented to one
more than the previous value when the update has
finished and the timehands is again consistent.

The timestamping code will grab a copy of this
generation number and compare this copy to the
generation in the timehands after completion and if
they differ it will restart the timestamping calcula-
tion.

do {
th = timehands;
gen = th->th_generation;
/* calculate timestamp */

} while (gen == 0 ||
gen != th->th_generation);

Each hardware device supporting timecounting is
represented by a small data structure called a time-
counter, which documents the frequency, the num-
ber of bits implemented by the counter and a
method function to read the counter.

Part of the state in the timehands structure is a
pointer to the relevant timecounter structure, this
makes it possible to change to a one piece of hard-
ware to another ‘‘on the fly’’ by updating the cur-
rent timehands pointer in a manner similar to the
periodic update function.

In practice this can be done with sysctl(8):

sysctl kern.timecounter.hardware=TSC

at any time while the system is running.

Suitable hardware

A closer look on ‘‘suitable hardware’’ is war-
ranted at this point. It is obvious from the above
description that the ideal hardware for timecount-
ing is a wide binary counter running at a constant
high frequency and atomically readable by all
CPUs in the system with a fast instruc-
tion(-sequence).

When looking at the hardware support on the PC
platform, one is somewhat tempted to sigh deeply
and mutter ‘‘so much for theory’’, because none of
the above parameters seems to have been on the
drawing board together yet.

All IBM PC derivatives contain a device more or
less compatible with the venerable Intel i8254
chip. This device contains 3 counters of 16 bits
each, one of which is wired so it can interrupt the
CPU when the programmable terminal count is
reached.

The problem with this device is that it only has
8bit bus-width, so reading a 16 bit timestamp takes
3 I/O operations: one to latch the count in an inter-
nal register, and two to read the high and low parts
of that register respectively.

Obviously, on multi-CPU systems this cannot be
done without some kind of locking mechanism
preventing the other CPUs from trying to do the
same thing at the same time.

Less obviously we find it is even worse than that:
Since a low priority kernel thread might be reading
a timestamp when an interrupt comes in, and since
the interrupt thread might attempt to generate a
timestamp also, we need to totally block interrupts
out while doing those three I/O instructions.

And just to make life even more complicated,
FreeBSD uses the same counter to provide the
periodic interrupts which schedule the hard-
clock() routine, so in addition the code has to
deal with the fact that the counter does not count
down from a power of two and that an interrupt is
generated right after the reloading of the counter
when it reaches zero.

Ohh, and did I mention that the interrupt rate for
hardclock() will be set to a higher frequency if pro-
filing is active ? 6

It hopefully doesn’t ever get more complicated
than that, but it shows, in its own bizarre and
twisted way, just how little help the timecounter
code needs from the actual hardware.

The next kind of hardware support to materialise
was the ‘‘CPU clock counter’’ called ‘‘TSC’’ in

6I will not even mention the fact that it can be set also
to ridiculous high frequencies in order to be able to use
the binary driven ‘‘beep’’ speaker in the PC in a PCM
fashion to output ‘‘real sounds’’.

official data-sheets. This is basically a on-CPU
counter, which counts at the rate of the CPU clock.

Unfortunately, the electrical power needed to run a
CPU is pretty precisely proportional with the clock
frequency for the prevailing CMOS chip technol-
ogy, so the advent of computers powered by batter-
ies prompted technologies like APM, ACPI,
SpeedStep and others which varies or throttles the
CPU clock to match computing demand in order to
minimise the power consumption 7.

Another wiggle for the TSC is that it is not usable
on multi-CPU systems because the counter is
implemented inside the CPU and not readable
from other CPUs in the system.

The counters on different CPUs are not guaranteed
to run syntonously (ie: show the same count at the
same time). For some architectures like the
DEC/alpha architecture they do not even run syn-
chronously (ie: at the same rate) because the CPU
clock frequency is generated by a small SAW
device on the chip which is very sensitive to tem-
perature changes.

The ACPI specification finally brings some light: it
postulates the existence of a 24 or 32 bit counter
running at a standardised constant frequency and
specifically notes that this is intended to be used
for timekeeping.

The frequency chosen, 3.5795454... MHz8

is not quite as high as one could have wished for,
but it is certainly a big improvement over the i8254
hardware in terms of access path.

But trust it to Murphys Law: The majority of
implementations so far have failed to provide
latching suitable to avoid meta-stability problems,
and several readings from the counter is necessary
to get a reliable timestamp. In difference from the
i8254 mentioned above, we do not need to any
locking while doing so, since each individual read
is atomic.

An initialization routine tries to test if the ACPI
counter is properly latched by examining the width
of a histogram over read delta-values.

7This technology also found ways into stationary com-
puters from two different vectors. The first vector was
technical: Cheaper cooling solutions can be used for the
CPU if they are employed resulting in cheaper commod-
ity hardware. The second vector was political: For rea-
sons beyond reason, energy conservation became an is-
sue with personal computers, despite the fact that practi-
cally north American households contains 4 to 5 house-
hold items which through inefficient designs waste more
power than a personal computer use.

8The reason for this odd-ball frequency has to be
sought in the ghastly colours offered by the original
IBM PC Color Graphics Adapter: It delivered NTSC
format output and therefore introduced the NTSC colour
sync frequency into personal computers.

Other architectures are similarly equipped with
means for timekeeping, but generally more care-
fully thought out compared to the haphazard devel-
opments of the IBM PC architecture.

One final important wiggle of all this, is that it
may not be possible to determine which piece of
hardware is best suited for clock use until well into
or even after the bootstrap process.

One example of this is the Loran-C receiver
designed by Prof. Dave Mills [MILLS1992] which
is unsuitable as timecounter until the daemon pro-
gram which implements the software-half of the
receiver has properly initialised and locked onto a
Loran-C signal.

Ideal timecounter hardware

As proof of concept, a sort of an existentialist
protest against the sorry state describe above, the
author undertook a project to prove that it is possi-
ble to do better than that, since none of the stan-
dard hardware offered a way to fully validate the
timecounter design.

Using a COTS product, ‘‘HOT1’’, from Virtual
Computers Corporation [VCC2002] containing a
FPGA chip on a PCI form factor card, a 26 bit
timecounter running at 100MHz was successfully
implemented.

In order to show that timestamping does not neces-
sarily have to be done using unpredictable and
uncalibratable interrupts, an array of latches were
implemented as well, which allow up to 10 exter-
nal signals to latch the reading of the counter when
an external PPS signal transitions from logic high
to logic low or vice versa.

PPS#1

26
 b

it
bi

na
ry

 c
ou

nt
er

.

...

26
 b

it
la

tc
h

26
 b

it
la

tc
h

PCI system bus

Clock
PPS#0

Using this setup, an standard 133 MHz Pentium
based PC is able to timestamp the PPS output of

the Motorola UT+ GPS receiver with a precision
of ± 10 nanoseconds ± one count which in practice
av erages out to roughly ± 15 nanoseconds9:

-20

-15

-10

-5

0

5

10

0 100 200 300 400 500 600 700 800 900 1000

na
no

se
co

nd
s

seconds

It shold be noted that the author is no hardware
wizard and a number of issues in the implementa-
tion results in less than ideal noise performance.

Now compare this to ‘‘ideal’’ timecounter to the
normal setup where the PPS signal is used to trig-
ger an interrupt via the DCD pin on a serial port,
and the interrupt handler calls nanotime() to
timestamp the external event 10:

0

20000

40000

60000

80000

100000

120000

140000

0 100 200 300 400 500 600 700 800 900 1000

na
no

se
co

nd
s

seconds

It is painfully obvious that the interrupt latency is
the dominant noise factor in PPS timestamping in
the second case. The asymetric distribution of the
noise in the second plot also more or less entirely
invalidates the design assumption in the NTP
PLL/FLL kernel code that timestamps are domi-
nated by gaussian noise with few spikes.

9The reason the plot does not show a very distinct 10
nanosecond quantization is that the GPS receiver pro-
duces the PPS signal from a clock with a roughly 55
nanosecond period and then predicts in the serial data
stream how many nanoseconds this will be offset from
the ideal time. This plot shows the timestamps corrected
for this ‘‘negative sawtooth correction’’.

10In both cases, the computers clock frequency con-
trolled with a Rubidium Frequency standard. The av er-
age quality of crystals used for computers would totally
obscure the curves due to their temperature coefficient.

Status and availability

The timecounter code has been developed
and used in FreeBSD for a number of years and
has now reached maturity. The source-code is
located almost entirely in the kernel source file
kern_tc.c, with a few necessary adaptations in code
which interfaces to it, primarily the NTP PLL/FLL
code.

The code runs on all FreeBSD platforms including
i386, alpha, PC98, sparc64, ia64 and s/390 and
contains no wordsize or endianess issues not
specifically handled in the sourcecode.

The timecounter implementation is distributed
under the ‘‘BSD’’ open source license or the even
more free ‘‘Beer-ware’’ license.

While the ability to accurately model and compen-
sate for inaccuracies typical of atomic frequency
standards are not catering to the larger userbase,
but this ability and precision of the code guarntees
solid support for the widespread deployment of
NTP as a time synchronization protocol, without
rounding or accumulative errors.

Adding support for new hardware and platforms
have been done several times by other developers
without any input from the author, so this particu-
lar aspect of timecounters design seems to work
very well.

Future work

At this point in time, no specific plans exist
for further development of the timecounters code.

Various micro-optimizations, mostly to compen-
sate for inadequate compiler optimization could be
contemplated, but the author resists these on the
basis that they significantly decrease the readabil-
ity of the source code.

Acknowledgements

The author would like to thank:

Bruce Evans for his invaluable assistance in tam-
ing the evil i8254 timecounter, as well as the
enthusiastic resistance he has provided throughout.

Professor Dave Mills of University of
Delaware for his work on NTP, for lending out the
neglected twin Loran-C receiver and for picking
up the glove when timecounters made it clear that
the old ‘‘microkernel’’ NTP timekeeping code
were not up to snuff [MILLS2000B].

Tom Van Baak for helping out, despite the
best efforts of the National Danish Posts center for
Customs and Dues to prevent it.

Corby Dawson for helping with the care and
feeding for caesium standards.

The staff at the NELS Loran-C control sta-
tion in Bø, Norway for providing information

about step-changes.

The staff at NELS Loran-C station Eiðe,
Faeroe Islands for permission to tour their installa-
tion.

The FreeBSD users for putting up with
‘‘micro uptime went backwards’’.

References

[AG2002] Published specifications for Agilent
model 5071A Primary Frequency Standard on
http://www.agilent.com

[DMK2001] "Accuracy Evaluation of a Cesium
Fountain Primary Frequency Standard at NIST."
D. M. Meekhof, S. R. Jefferts, M. Stephanovic,
and T. E. Parker IEEE Transactions on instrumen-
tation and measurement, VOL. 50, NO. 2, APRIL
2001.

[PHK2001] "Monitoring Natural Gas Usage" Poul-
Henning Kamp http://phk.freebsd.dk/Gasdims/

[MILLS1992] "A computer-controlled LORAN-C
receiver for precision timekeeping." Mills, D.L.
Electrical Engineering Department Report 92-3-1,
University of Delaware, March 1992, 63 pp.

[MILLS2000A] Levine, J., and D. Mills. "Using
the Network Time Protocol to transmit Interna-
tional Atomic Time (TAI)". Proc. Precision Time
and Time Interval (PTTI) Applications and Plan-
ning Meeting (Reston VA, November 2000),
431-439.

[MILLS2000B] "The nanokernel." Mills, D.L.,
and P.-H. Kamp. Proc. Precision Time and Time
Interval (PTTI) Applications and Planning Meet-
ing (Reston VA, November 2000), 423-430.

[RGO2002] For an introduction to Harrison and
his clocks, see for instance
http://www.rog.nmm.ac.uk/museum/harrison/
or for a more detailed and possibly better
researched account: Dava Sobels excellent book,
"Longitude: The True Story of a Lone Genius Who
Solved the Greatest Scientific Problem of His
Time" Penguin USA (Paper); ISBN: 0140258795.

[SAGE] This ‘‘gee-wiz’’ kind of article in Dr.
Jobbs Journal is a goot place to start:
http://www.ddj.com/docu-
ments/s=1493/ddj0001hc/0085a.htm

[VCC2002] Please consult Virtual Computer Cor-
porations homepage:
http://www.vcc.com

