

Programming like it's 2007

Varnish – a 2007 software design

Poul-Henning Kamp

phk@FreeBSD.org

mailto:phk@FreeBSD.org

Varnish Cheat-Sheet

● Web-accelleration for slow CMS systems
● Narrow focus on server side speedup

– No FTP etc.
– Content provider features

● High Performance
– 32 & 64bit, large RAM, sendfile, accept filters
– SMP/Multicore friendly architecture
– 2006 software design
– 11 syscall + 7 locks per cache hit

Varnish is fast!

● 1000 cache hits @ 100 Mbit/sec:

Sample Min Max Median Average Stddev
Full 12,9 3001 16,2 71,1 338,5
90% fractile 12,9 26 15,9 16,3 1,7

(all times are in microseconds)

var·nish (värʹnĭsh)

n.

1. a. A paint containing [...]

tr.v. var·nished, var·nish·ing, var·nish·es

1. To cover with varnish.

2. To give a smooth and glossy finish to.

3. To give a deceptively attractive appearance to;
gloss over.

javascript:play('V0032600')

Varnish Coordinates

● WWW.varnish-cache.org
– Yes, we need to work on the web-page.

● Coded by: Poul-Henning Kamp
– phk@FreeBSD.org

● Runs on: Any resonable modern UNIX
– FreeBSD, Linux etc.

● Open Source
– BSD license

http://WWW.varnish-cache.org/
mailto:phk@FreeBSD.org

Why I wrote Varnish

● I was sceptical when VG approached me
with the Varnish Project.
– Not really my specialty
– Not really my preferred area

● On the other hand...
– I'm tired of people writing lousy programs

and blaming it on ”my” kernel
– A fine chance to educate by example

● Also, I could use the money.

Performance Programming

● Understand and exploit the envelope of
your requirements

● Avoid unecessary work
● Use few cheap operations
● Use even fewer expensive operations
● Don't fight the kernel
● Use the features the nice kernel guys

have given you

”A computer consists of a CPU, internal
storage and external storage”

RAM DISKCPU

Bus

”A Computer consists of a number of
processing units (”cores”) connected via
a number of caches and busses to a
virtualized storage.”

RAM ?

DISK ?

CPU ?

A usable conceptual model

”A computer consists of a number of cores
with private caches, a shared, page
granularity, cache for external storage
objects.”

Squid is 1970 model

● Some objects ”in Memory”
● Other objects ”on disk”
● Explicit transfer between the two states:

– Unused memory object gets written to disk
– Disk object gets read to memory for

transmission.

RAM DISK (filesystem)

RAM DISK (filesystem) DISK (paging)

(Virtual-)RAM DISK (paging)

I know what you're thinking, proc:

 'Did he send SIGHUP or SIGTERM ?'

Well, to tell you the truth, I've forgotten myself in all this
excitement.

But being as this is SIGKILL, the most powerful signal in
UNIX, and would blow your memory clean, you've got to ask
yourself a question:

 'Do I feel lucky?'

Well, do ya, proc?

Fighting the kernel from userland is plain stupid...

Virtual memory shortage

● On 32 bit systems VM is limited to ~2GB

● If you have a webserver with a larger
working set of content, you can afford to
buy a new 64 bit CPU.

Performance price List

● char *p += 5;
● strlen(p);
● memcpy(p, q, l);
● Locking
● System Call
● Context Switch
● Disk Access
● Filesystem operation

Expensive

Cheap CPU

Memory

Protection

Mechanical

How Cheap or Expensive ?

● CPU clock: 4 Ghz
● Multiple instructions per clock cycle
● Several layers of cache

● Conservative rule of thumb:

1 Billion instructions per second

Cost of a system call ?

● Context switch to kernel is expensive.
– Thousands of clocks to save/restore registers
– Argument validation
– Page Table modifications

● 1 µsec = 0.000001s = 1,000 instructions

Cost of disk I/O

● Enter kernel
● Navigate disk layout

– Filesystem, partitions etc.

● Via device driver to hardware
● Busses, handshaking etc.
● Mechanical movement.
● 1 msec= 0.001s = 1,000,000 instructions

Varnish logging

● Logging to shared memory
– Practically Free (as in peanuts)
– No slowdown for the real workload.

● Generate ”real” output in separate
processes, which ”tail” the shmlog:
– Apache format
– Custom format
– Realtime views

Logging

● Logging to a file is expensive:

FILE *flog;

flog = fopen(”/var/log/mylog”, ”a”);

[...]

fprintf(flog, ”%s Something went wrong with %s\n”,
 timestamp(), myrepresentation(object));
fflush(flog);

Filesystem operation

Disk I/O

Once only

Millons of calls

Cheap logging

● Shared memory logging is cheap:

char *logp, *loge;

fd = open(...);
logp = mmap(..., size);
loge = logp + size;

[...]
LOCK(&shmlog);
logp[1] = LOG_ERROR;
logp[2] = sprintf(logp + 3,
 ”Something went bad with %s”,
 myrepresentation(obj));
logp[3 + logp[2]] = LOG_END;
logp[0] = LOG_ENTRY;
logp += 3 + logp[2];
UNLOCK(&shmlog);

Memory and arithmetic

Once only

Filesystem ops

Millions of calls.

But it can be even cheaper

● strlen(3) and ASCIIZ format is not cheap
● Keep track of both ends of strings
● Use memcpy(3) instead of strcpy(3)

– memcpy(3) can move data in 32 or even 64
bit chunks.

– strcpy(3) has to use 8 bit chunks.

But it can be even cheaper

● Add a shmlog buffer to worker threads
● Logging to this buffer is lockless
● Batch ”commit” local buffer to ”real”

shmlog at synchronization points.
– Cost: One lock + one memcpy().

● => Practically no mutex contention.

...and

● Coredumps contains the most recent log
records

● We can afford to log much more detail, it
does not take up disk-space

● Approx 30 records per request
– =>100.000's records/sec

”varnishtop”

● Example of ad-hoc shmlog reader:
● ./varnishtop -i sessionclose
● Why do sessions

close ?

 132232.12 timeout
 39002.59 EOF
 5232.97 not HTTP/1.1
 3069.28 Connection: close
 1383.40 remote closed
 630.93 silent
 15.49 pipe
 9.15 Not in cache.
 6.36 Purged.
 5.41 no request
 0.98 Bad Request

Memory Strategy

● How long is a HTTP header ?
– 80 char ? 256 char ? 2048 char ?

● Classic strategy:
– Allocate small, extend with realloc(3)

● Realloc(3) to more memory is expensive
– Needs memory copy 99% of the times.

Memory Strategy

Special offer!

Virtually FREE memory

offer good from 1980 onwards

Memory Strategy

Allocate enough memory for 99% of the
cases up front

Unused & untouched memory is free
– as in ”peanuts”

Long lived data ? - trim back with realloc(3)

Memory management

● During the handling of a request we need
various bits of memory

● Use a private pool
– Keeps things close together (good caching)
– Avoids locking against other CPUs

● Free everything with a single pointer
assignment at the end
– As cheap as can be

Memory/Lock interaction

● Do minimum work while holding lock

● Allocate memory before grabbing lock

● If you didn't need it anyway:

- cache it until next time

Preallocation

LOCK(storage_lock);
TAILQ_FOREACH(...) {
 if (...)
 break; /* found */
}
if (ptr == NULL) {
 ptr = malloc(sizeof *wp>store);
 assert(wp>store != NULL);
 [...] // fill ptr>stuff
 TAILQ_INSERT_TAIL(...)
}
UNLOCK(storage_lock)

Malloc(3)

 May need to synchronize
 between CPUs with locks

 May need to get memory
 from kernel with syscall

Preallocation

if (wp>store == NULL) {
 wp>store = malloc(sizeof *wp>store);
 assert(wp>store != NULL);
}

LOCK(storage_lock);
TAILQ_FOREACH(...) {
 if (...)
 break; /* found */
}
if (ptr == NULL) {
 ptr = wp>store;
 wp>store = NULL
 [...] // fill ptr>stuff
 TAILQ_INSERT_TAIL(...)
}
UNLOCK(storage_lock)

malloc call moved out
of locked code section.

Lock held shorter time.

Avoid unnecessary work

● Don't copy data when we can avoid it
– Receive headers into one chunk of memory

and leave them there

● Don't text-process all HTTP headers
– We only care about few of them

● Transport headers by reference
– Use scatter/gather I/O (see writev(2) syscall).

Avoid strlen(3)

● find_hdr(sp>http, ”Host:”)

– find_hdr() must do strlen(3) on literal
constant to find out how long it is.

● find_hdr(sp>http, ”Host:”, 5)

– Better, but programmer has to get it right.

● #define HTTP_HOST ”\005Host:”
find_hdr(sp>http, HTTP_HOST);

– Even better, programmer must only get it
right once.

Remember the caches

● Reuse most recently used resource.
– It is more likely to be in cache.

● Process, Thread, Memory, File, Directory,
Disk-block etc.

● Avoid round-robin scheduling.
– Use ”Last-In-First-Out” (ie: stack)
– Not ”First-In-First-Out” (ie: queue)

Measure & Benchmark

● Understand how often things happen
– Use tcov(1) or add counters.

● Check your assumptions
– Use ktrace(8) to see the system-calls.

● Study system statistics
– Netstat(8), Vmstat(8), sysctl(8)

● Time things if in doubt
– use clock_gettime(3) or RDTSC()

