

Varnish http accelerator

- A 2006 software design

Poul-Henning Kamp

phk@FreeBSD.org

mailto:phk@FreeBSD.org

Varnish Cheat-Sheet

● Web-accelleration for slow CMS systems
● Narrow focus on server side speedup

– No FTP etc.
– Content provider features

● High Performance
– 32 & 64bit, large RAM, sendfile, accept filters
– SMP/Multicore friendly architecture
– 2006 software design
– 11 syscall + 7 locks per cache hit

dictionary:Varnish

● tr. v. var·nished, var·nish·ing, var·nish·es

– 1. To cover with varnish.

– 2. To give a smooth and glossy finish to.

– 3. To give a deceptively attractive
appearance to.

RFC2616 and Varnish

Shared
HTTP
Cache

HTTP
Origin
Server

Private
HTTP
Cache

HTTP
Client

HTTP
Client

HTTP
Client

Server domain Client domain

Varnish
HTTP
cache

RFC2616 origin server

Client Cache Situation

● Origin servers are adversarial.
● Anything the origin server says is law

– ... if we can make sense of it.

● If in doubt: don't cache.
● Be semantically transparent at any cost.
● If origin server does not reply: error.

Server Cache Situation

● Backend (origin server) is on our side
– More precisely: We are on its side.

● We might be responsible for modifying
the origin servers instructions.
– Change TTL, rewrite URLs etc.

● Whatever happens: protect the backend.
● If backend does not reply: do something!

Content Provider Features

● Instant URL invalidation
– Regexp matching
– Easy Integration to CMS system

● Each object checked max 1 time
– When used next time
– Many objects will expire without being

checked.

Content Provider Features

● Varnish Configuration Language
– Full expiry time control
– Load/Situation mitigation
– Content substitution
– URL editing

● Prefetching (v2 feature)
– Inspect object usage stats
– Compression for bandwidth savings

Varnish Config Language

● Simple domain specific language
– Compiled via C language to binary

● Transparantly handled by manager process.

– Dynamically loaded into cache process
– Multiple VCLs can be loaded concurrently

● Instant switch from one VCL to another.
– From CLI or VCL

VCL example

 acl journalists {
 10.0.0.0/8;
 }

 if (client.ip ~ journalists) {
 pass;
 }

 if (req.url.host ~ "cnn.no$") {
 rewrite req.url.host ”cnn.no” ”vg.no”;
 }

 if (!backend.up) {
 if (obj.exist) {
 set obj.ttl += 10m;
 deliver;
 }
 switch_config ”ohhshit”;
 }

Operational Features

● Two process design
– Automatic restarts on crash

● One binary program
– Easy installs

● Command Line Interface
– No need for browser with java
– Change parameters on the fly

Varnish Architecture

Cluster
Controller

Manager Cacher

ChildProcMgt

CmdLine

Initialization

Params/Args

CmdLine

Storage

Log/Stats

Accept/herder

Worker threads

Grim Reaper

C-compiler Shared object

CmdLine

Web-interface

CMS-interface

SMS-interface

CLI-interface

One binary program

Shared
Memory

logwriter
stats

ad-hoc

Backend

Hashing

VCL compiler

Watchdog

Varnish is fast!

● 1000 cache hits @ 100 Mbit/sec:

Sample Min Max Median Average Stddev
Full 12,9 3001 16,2 71,1 338,5
90% fractile 12,9 26 15,9 16,3 1,7

(all times are in microseconds)

Varnish Coordinates

● WWW.varnish-cache.org
– Yes, we need to work on the web-page.

● Coded by: Poul-Henning Kamp
– phk@FreeBSD.org

● Runs on: Any resonable modern UNIX
– FreeBSD, Linux etc.

● Open Source
– BSD license

http://WWW.varnish-cache.org/
mailto:phk@FreeBSD.org

Why I wrote Varnish

● I was sceptical when VG approached me
with the Varnish Project.
– Not really my specialty
– Not really my preferred area

● On the other hand...
– I'm tired of people writing lousy programs

and blaming it on ”my” kernel
– A fine chance to educate by example

● Also, I could use the money.

Performance Programming

● Understand and exploit the envelope of
your requirements

● Avoid unecessary work
● Use few cheap operations
● Use even fewer expensive operations
● Don't fight the kernel
● Use the features the nice kernel guys

have given you

People program like 1970

● ”A computer consists of a CPU, internal
storage and external storage”

RAM DISKCPU

Bus

2006 reality

● ”A Computer consists of a number of
processing units (”cores”) connected via
a number of caches and busses to a
virtualized storage.”

RAM ?

DISK ?

CPU ?

2006 conceptual model

● ”A computer consists of a number of
cores with private caches, a shared, page
granularity, cache for external storage
objects.”

Squid is 1970 model

● Some objects ”in Memory”
● Other objects ”on disk”
● Explicit transfer between the two states:

– Unused memory object gets written to disk
– Disk object gets read to memory for

transmission.

Fight the kernel (1)

● Squid creates a memory object
● Gets used some, then falls into disuse
● Kernel runs short of RAM
● Kernel pages unused pages out to disk

Fight the kernel (2)

● Squid decides memory object is unused
and should be moved to disk

● Creates file, issues write(2)
● Page is not in RAM, generates Page-Fault
● Kernel reads data back from disk

● Kernel fixes pagetable, continues squid

kernel may
need to page
something out
to make space

Fight the kernel (3)

● Squids write(2) can write object to disk

● Squid can reuse memory for other object

Fight the kernel (4)

● Squid needs first object back
● Push something to disk

● Read in first object back in

Varnish

● Varnish puts object in virtual memory
● Object used some, then falls into disuse
● Kernel pages object out to free RAM for

better use.
● Varnish access object in virtual memory
● Kernel page-faults, reads object from

disk.

Virtual memory shortage

● On 32 bit systems VM is limited to ~2GB

● If you have a webserver with a larger
working set of content, you can afford to
buy a new 64 bit CPU.

Performance price List

● char *p += 5;
● strlen(p);
● memcpy(p, q, l);
● Locking
● System Call
● Context Switch
● Disk Access
● Filesystem operation

Expensive

Cheap CPU

Memory

Protection

Mechanical

How Cheap or Expensive ?

● CPU clock: 4 Ghz
● Multiple instructions per clock cycle
● Several layers of cache

● Conservative rule of thumb:

1 Billion instructions per second

Cost of a system call ?

● Context switch to kernel is expensive.
– Thousands of clocks to save/restore registers
– Argument validation
– Page Table modifications

● 1 µsec = 0.000001s = 1,000 instructions

Cost of disk I/O

● Enter kernel
● Navigate disk layout

– Filesystem, partitions etc.

● Via device driver to hardware
● Busses, handshaking etc.
● Mechanical movement.
● 1 msec= 0.001s = 1,000,000 instructions

Varnish logging

● Logging to shared memory
– Practically Free (as in peanuts)
– No slowdown for the real workload.

● Generate ”real” output in separate
processes, which ”tail” the shmlog:
– Apache format
– Custom format
– Realtime views

Logging

● Logging to a file is expensive:

FILE *flog;

flog = fopen(”/var/log/mylog”, ”a”);

[...]

fprintf(flog, ”%s Something went wrong with %s\n”,
 timestamp(), myrepresentation(object));
fflush(flog);

Filesystem operation

Disk I/O

Once only

Millons of calls

Cheap logging

● Shared memory logging is cheap:

char *logp, *loge;

fd = open(...);
logp = mmap(..., size);
loge = logp + size;

[...]
LOCK(&shmlog);
logp[1] = LOG_ERROR;
logp[2] = sprintf(logp + 3,
 ”Something went bad with %s”,
 myrepresentation(obj));
logp[3 + logp[2]] = LOG_END;
logp[0] = LOG_ENTRY;
logp += 3 + logp[2];
UNLOCK(&shmlog);

Memory and arithmetic

Once only

Filesystem ops

Millions of calls.

But it can be even cheaper

● strlen(3) and ASCIIZ format is not cheap
● Keep track of both ends of strings
● Use memcpy(3) instead of strcpy(3)

– memcpy(3) can move data in 32 or even 64
bit chunks.

– strcpy(3) has to use 8 bit chunks.

But it can be even cheaper

● Add a shmlog buffer to worker threads
● Logging to this buffer is lockless
● Batch ”commit” local buffer to ”real”

shmlog at synchronization points.
– Cost: One lock + one memcpy().

● => Practically no mutex contention.

...and

● Coredumps contains the most recent log
records

● We can afford to log much more detail, it
does not take up disk-space

● Approx 30 records per request
– =>100.000's records/sec

”varnishtop”

● Example of ad-hoc shmlog reader:
● ./varnishtop -i sessionclose
● Why do sessions

close ?

 132232.12 timeout
 39002.59 EOF
 5232.97 not HTTP/1.1
 3069.28 Connection: close
 1383.40 remote closed
 630.93 silent
 15.49 pipe
 9.15 Not in cache.
 6.36 Purged.
 5.41 no request
 0.98 Bad Request

Varnishtop

● What is my most popular URL ?
 1304.86 /tmv11.js
 989.08 /sistenytt.html
 495.05 /include/global/art.js
 491.01 /css/hoved.css
 490.05 /gfk/ann/n.gif
 480.08 /gfk/ann/ng.gif
 468.12 /gfk/front/tipsvg.png
 352.66 /css/ufront.css
 317.75 /t.gif
 306.79 /gfk/plu2.gif
 298.84 /css/front.css
 292.84 /gfk/min2.gif
 280.94 /css/blog.css
 279.84 /

Where does traffic come from ?

 33913.74 Referer: http://www.vg.no/
 4730.72 Referer: http://vg.no/
 925.62 Referer: http://www.vg.no
 510.10 Referer: http://www.vg.no/pub/vgart.hbs?artid=169075
 434.37 Referer: http://www.vg.no/export/Transact/menu.html
 349.55 Referer: http://www.vg.no/pub/vgart.hbs?artid=169063
 344.66 Referer: http://www.vg.no/pub/vgart.hbs?artid=155682
 324.06 Referer: http://www.vg.no/export/Transact/top.hbs
 297.25 Referer: http://www.nettby.no/user/
 263.82 Referer: http://www.vg.no/sport/fotball/
 242.55 Referer: http://www.vg.no/pub/vgart.hbs?artid=169081

Statistics

● Same story

● Stored in shared memory

● Programs can monitor & present data

● No system calls necessary to get up to
date numbers

Real-time statistics

16:23:13
Hitrate ratio: 9 9 9
Hitrate avg: 0.9986 0.9986 0.9986

 17772105 435.55 301.26 Client connections accepted
 130213161 3623.22 2207.26 Client requests received
 129898315 3617.23 2201.93 Cache hits
 85043 0.00 1.44 Cache hits for pass
 227180 4.99 3.85 Cache misses
 313630 4.99 5.32 Backend connections initiated
 439 0.00 0.01 Backend connections recyles
 54 0.00 0.00 Backend connections unused
 6196 1.00 0.11 N struct srcaddr
 1656 24.97 0.03 N active struct srcaddr
 3222 0.00 0.05 N struct sess_mem
 2258 51.95 0.04 N struct sess
 65685 5.99 1.11 N struct object
 65686 5.99 1.11 N struct objecthead

Memory Strategy

● How long is a HTTP header ?
– 80 char ? 256 char ? 2048 char ?

● Classic strategy:
– Allocate small, extend with realloc(3)

● Realloc(3) to more memory is expensive
– Needs memory copy 99% of the times.

Memory Strategy

Special offer!

Virtually FREE memory

offer good from 1980 onwards

Memory Strategy

● Allocate enough memory for 99% of the
cases up front

● Unused & untouched memory is free
– as in ”peanuts”

● If data is long lived, trim back with
realloc(3)

Memory management

● During the handling of a request we need
various bits of memory

● Use a private pool
– Keeps things close together (good caching)
– Avoids locking against other CPUs

● Free everything with a single pointer
assignment at the end
– As cheap as can be

Memory/Lock interaction

● Do minimum work while holding lock

● Allocate memory before grabbing lock

● If you didn't need it anyway:

- cache it until next time

Preallocation

LOCK(storage_lock);
TAILQ_FOREACH(...) {
 if (...)
 break; /* found */
}
if (ptr == NULL) {
 ptr = malloc(sizeof *wp>store);
 assert(wp>store != NULL);
 [...] // fill ptr>stuff
 TAILQ_INSERT_TAIL(...)
}
UNLOCK(storage_lock)

Malloc(3)

 May need to synchronize
 between CPUs with locks

 May need to get memory
 from kernel with syscall

Preallocation

if (wp>store == NULL) {
 wp>store = malloc(sizeof *wp>store);
 assert(wp>store != NULL);
}

LOCK(storage_lock);
TAILQ_FOREACH(...) {
 if (...)
 break; /* found */
}
if (ptr == NULL) {
 ptr = wp>store;
 wp>store = NULL
 [...] // fill ptr>stuff
 TAILQ_INSERT_TAIL(...)
}
UNLOCK(storage_lock)

malloc call moved out
of locked code section.

Lock held shorter time.

Avoid unnecessary work

● Don't copy data when we can avoid it
– Receive headers into one chunk of memory

and leave them there

● Don't text-process all HTTP headers
– We only care about few of them

● Transport headers by reference
– Use scatter/gather I/O (see writev(2) syscall).

Avoid strlen(3)

● find_hdr(sp>http, ”Host:”)

– find_hdr() must do strlen(3) on literal
constant to find out how long it is.

● find_hdr(sp>http, ”Host:”, 5)

– Better, but programmer has to get it right.

● #define HTTP_HOST ”\005Host:”
find_hdr(sp>http, HTTP_HOST);

– Even better, programmer must only get it
right once.

Remember the caches

● Reuse most recently used resource.
– It is more likely to be in cache.

● Process, Thread, Memory, File, Directory,
Disk-block etc.

● Avoid round-robin scheduling.
– Use ”Last-In-First-Out” (ie: stack)
– Not ”First-In-First-Out” (ie: queue)

Measure & Benchmark

● Understand how often things happen
– Use tcov(1) or add counters.

● Check your assumptions
– Use ktrace(8) to see the system-calls.

● Study system statistics
– Netstat(8), Vmstat(8), sysctl(8)

● Time things if in doubt
– use clock_gettime(3) or RDTSC()

