Varnish

- a server-side http cache

Poul-Henning Kamp

phk@FreeBSD.org

mailto:phk@FreeBSD.org

dictionary:Varnish

e tr. v. var-nished, var-nish-ing, var-nish-es

- To cover with varnish.
- To give a smooth and glossy finish to.

- To give a deceptively attractive appearance
to.

Varnish Cheat-Sheet

* \Web-accelleration for slow CMS systems

* Narrow focus on server side speedup
- No FTP etc.
- Content provider features

* Modern Hardware/Software

- 64Dbit, large RAM, sendfile, accept filters
- Also runs on 32bit machines
- SMP/Multicore friendly architecture

RFC2616 on HTTP caches

Server domain Client domain
...... y HTTP |
1 1 h : 1
t HTTP - Client
' Origin + .

Serverre | ammmaaa- :

EEELEE | iShared . jmm-———- -
THTTP 1 s HTTP |
' Cache . Client!
\ Privatei E HTTP E
 HTTP 1 Client !
' Cache , ' "

RFC2616 and Varnish

Server domain Client domain
CTTTIITIIIIETTTTS : HTTP
1 .] - . .
t HTTP Varnish» <« : Client
Origin o HTTP .

: Server cache | - | a===aaa.

: T _iShared . TELEE -
""""""""" ' 'HTTP 1 : HTTP |
A . L
| : Cache . Client |
RFC2616 origin server \ tmm—m-e
.- Privatei : HTTP E

Client Cache Situation

Origin servers are adversarial.
Anything the origin server says is law.
If in doubt: don't cache.

Be transparent at any cost.

If origin server does not reply: error.

Server Cache Situation

 Backend (origin server) is our friend.

 We can be responsible for modifying the
origin servers instructions.

- Change TTL, rewrite URLs etc.
* Whatever happens: protect the backend.

* |f backend does not reply: do something!

CMS systems

e GET / HITP/ 1.1

- Hang on, | need to look up a few hundred
things in my database and then do a lot of
editing with some badly written software.

e HEAD / HITP/ 1.1

- Hang on, | need to look up a few hundred
things in my database and then do a lot of
editing with some badly written software, and
then | will throw the result away.

CMS systems are SLOW!

e Complex content generation process
* Single database prevents clustering
 Expensive software ditto.

» => Need for server side caching.
- Apache
- Squio
- $CALL

Apache as cache

* Not what Apache is built for.

* Not what Apache is good at.
e Square peg, round hole.

Squid Is a cache...

 ...built for client side caching.

e Lots of unwanted functionality.

- Authentication.
- FTP

e 1980'ies software design.

* Fragile and buggy.

* Wrong configuration features.
 Wrong policy decisions.

$CALL

 Akamali will happily take your money.
e But you loose control.
* You're stuck with their service.

Enter Varnish...

* Built for server-side caching.

e 2006 software design:

- Multi-Processor / Multi-Core / Multi-Thread.
- Virtual Memory, shared memory.
- Sendfile, Accept filter.

e Content provider features:

- Instant URL invalidation.
- Full Policy Control.

Content Manager Features

* URL invalidation with no delay
- Regexp matching
e TTL control (via VCL)
e | oad/Situation mitigation (via VCL)
e Shared Memory Log
- Fast special purpose log-tailers

OaM

e Cluster controller

- Invalidate URL on all caches instantly
- Change VCL on all caches simultaneously.
- Aggregate statistics

e Command Line Interface

- Remote access via ssh/mobile phone
- Interrogation/configuation/investigation

Performance Design

* Don't copy data if we can avoid it

- Avoid text-processing headers
 Convert Chunked encoding to Direct
 Also cache "cannot be cached” info

e Maximize session usage

- Pass-through mode understands chunked
encoding etc.

- Pipe mode for weird stuff (selected by VCL)

Varnish Architecture

|
Cluster Management Child/Cache |
Controller | Process Process |
~ » CmdLine » CmdLine » (Cmdline) |
|
| ChildProcMgt Storage/hashing |
| \/
Initialization Log/Stats |
—— CLl-interface — J Shared
. " Memory
, - VCL compiler Accept/Backend
-~ Web-interface |
| | Worker threads
—— CMS-interface | | _
Grim Reaper logwriter
 SMS-interface | - stats
. T — ad-hoc

One binary program C-compiler —» Shared object

Varnish Config Language

* Simple domain specific language

- Compiled via C language to binary
 Transparantly!
- Dynamically loaded

- Multiple configs loaded concurrently
e |nstant switch from one VCL to another.
- Can be done from VCL(!)

VCL example

if (client.ip in 10.0.0.0/8) {
pass;
}

if (reg.url.host ~ "cnn.no%$") {
rewrite req.url.host “cnn.no
}

if (backend.up) {
if (obj.exist) {
set obj.ttl += 10m;
deliver;

n-n

vg.no”

}

switch_config "ohhshit”;

VCL structure

Request —» VCL RECV() Grim Reaper
—» error
f Iookup —i i
—— VCL_TIMEOUT()
r VCL_HIT() VCL_MISS()
pass/ fetch «———
pipe '

VCL_RECV() v .
‘¢ prefetch discard

insert
Y
deliver =

Storage

 Storage methods are plugable

- Malloc
 Simple malloc(3)/free(3)
- File
e Mmap(2)'s one file
- Tar
* Loads tar(1) file with static objects

storage file

Uses a single file

Most recently accessed/First fit allocation
Mmap(2)'ed into process

Use sendfile(2) if available

Avoids filesystem namespace-lookup

Not Persistent
- Avoids integrity check.

Logging

* Logging to shared memory
- No slowdown for real workload

e Daemons tailing shm generate "real”
output:

- Apache format
- Custom format
- Realtime views

Statistics

e Stored in shared memory

* Programs can monitor & present data

Status

e All the "technical” code is written
- Live 'smoke test' today with www.vg.no

e "Political” code needs to be filled in
- Mostly VCL runtime parts.

* Profiling and performance tuning

http://www.vg.no/

Performance

e | ab test:

- Dual Opteron Dual Core, 4G, 1 disk

- FreeBSD 6-Stable (KSE threads)

- 100.000 Objects @ 8K

- 4 pipelined clients picking random objects
- 97% hitrate (due to object expiry)

- 200+ Mbit/s, 3000 reqg/sec.

- CPU load ~2.0

Performance

e | |ve test:

- Dual Opteron 2.4 GHz, 4GB RAM

- FreeBSD 6-Stable, accept filters

- www.vg.no Traffic, 3000-4000 objects
- 95-97 % object hit rate

- 1300-1400 reqg/sec

- 100 Mbit/s (Filled the pipe)

http://www.vg.no/

Performance

e | |ve test:

- Dual Opteron 2.4 GHz, 4GB RAM

- FreeBSD 6-Stable, accept filters

- www.vg.no Traffic, 3000-4000 objects
- 95-97 % object hit rate

- 1300-1400 reqg/sec

- 100 Mbit/s (Filled the pipe)

http://www.vg.no/

Varnish

* BSD license
e http://varnish.projects.linpro.no
 Sponsored by Verdens Gang

* Volunteers and testers needed ~juli'O6

