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dictionary:Varnish

● tr. v. var·nished, var·nish·ing, var·nish·es

– To cover with varnish.

– To give a smooth and glossy finish to.

– To give a deceptively attractive appearance 
to.



  

Varnish Cheat-Sheet

● Web-accelleration for slow CMS systems
● Narrow focus on server side speedup

– No FTP etc.
– Content provider features

● Modern Hardware/Software
– 64bit, large RAM, sendfile, accept filters
– Also runs on 32bit machines
– SMP/Multicore friendly architecture



  

RFC2616 on HTTP caches
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Client Cache Situation

● Origin servers are adversarial.
● Anything the origin server says is law.
● If in doubt: don't cache.
● Be transparent at any cost.
● If origin server does not reply: error.



  

Server Cache Situation

● Backend (origin server) is our friend.
● We can be responsible for modifying the 

origin servers instructions.
– Change TTL, rewrite URLs etc.

● Whatever happens: protect the backend.
● If backend does not reply: do something!



  

CMS systems

● GET / HTTP/1.1

– Hang on, I need to look up a few hundred 
things in my database and then do a lot of 
editing with some badly written software.

● HEAD / HTTP/1.1

– Hang on, I need to look up a few hundred 
things in my database and then do a lot of 
editing with some badly written software, and 
then I will throw the result away.



  

CMS systems are SLOW!

● Complex content generation process
● Single database prevents clustering
● Expensive software ditto.

● => Need for server side caching.
– Apache
– Squid
– $CALL



  

Apache as cache

● Not what Apache is built for.
● Not what Apache is good at.
● Square peg, round hole.



  

Squid is a cache...

● ...built for client side caching.
● Lots of unwanted functionality.

– Authentication.
– FTP

● 1980'ies software design.
● Fragile and buggy.
● Wrong configuration features.
● Wrong policy decisions.



  

$CALL

● Akamai will happily take your money.
● But you loose control.
● You're stuck with their service.



  

Enter Varnish...

● Built for server-side caching.
● 2006 software design:

– Multi-Processor / Multi-Core / Multi-Thread.
– Virtual Memory, shared memory.
– Sendfile, Accept filter.

● Content provider features:
– Instant URL invalidation.
– Full Policy Control.



  

Content Manager Features

● URL invalidation with no delay
– Regexp matching

● TTL control (via VCL)
● Load/Situation mitigation (via VCL)
● Shared Memory Log

– Fast special purpose log-tailers



  

OaM

● Cluster controller
– Invalidate URL on all caches instantly
– Change VCL on all caches simultaneously.
– Aggregate statistics

● Command Line Interface
– Remote access via ssh/mobile phone
– Interrogation/configuation/investigation



  

Performance Design

● Don't copy data if we can avoid it
– Avoid text-processing headers

● Convert Chunked encoding to Direct
● Also cache ”cannot be cached” info
● Maximize session usage

– Pass-through mode understands chunked 
encoding etc.

– Pipe mode for weird stuff (selected by VCL)



  

Varnish Architecture
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Varnish Config Language

● Simple domain specific language
– Compiled via C language to binary

● Transparantly!

– Dynamically loaded
– Multiple configs loaded concurrently

● Instant switch from one VCL to another.
– Can be done from VCL(!)



  

VCL example

                if (client.ip in 10.0.0.0/8) {
                        pass;
                }

                if (req.url.host ~ "cnn.no$") {
                        rewrite req.url.host ”cnn.no” ”vg.no”
                }

                if (!backend.up) {
                        if (obj.exist) {
                                set obj.ttl += 10m;
                                deliver;
                        }
                        switch_config ”ohhshit”;
                }                



  

VCL structure

Request VCL_RECV()

lookup

VCL_HIT() VCL_MISS()

fetch

VCL_RECV()

VCL_TIMEOUT()

discardprefetch

deliver

insert

error

pass/
pipe

Grim Reaper



  

Storage

● Storage methods are plugable
– Malloc

● Simple malloc(3)/free(3)

– File
● Mmap(2)'s one file

– Tar
● Loads tar(1) file with static objects



  

storage_file

● Uses a single file
● Most recently accessed/First fit allocation
● Mmap(2)'ed into process
● Use sendfile(2) if available
● Avoids filesystem namespace-lookup
● Not Persistent

– Avoids integrity check.



  

Logging

● Logging to shared memory
– No slowdown for real workload

● Daemons tailing shm generate ”real” 
output:
– Apache format
– Custom format
– Realtime views



  

Statistics

● Stored in shared memory

● Programs can monitor & present data



  

Status

● All the ”technical” code is written
– Live 'smoke test' today with www.vg.no

● ”Political” code needs to be filled in
– Mostly VCL runtime parts.

● Profiling and performance tuning

http://www.vg.no/


  

Performance

● Lab test:
– Dual Opteron Dual Core, 4G, 1 disk
– FreeBSD 6-Stable (KSE threads)
– 100.000 Objects @ 8K
– 4 pipelined clients picking random objects
– 97% hitrate (due to object expiry)
– 200+ Mbit/s, 3000 req/sec.
– CPU load ~2.0



  

Performance

● Live test:
– Dual Opteron 2.4 GHz, 4GB RAM
– FreeBSD 6-Stable, accept filters
– www.vg.no Traffic, 3000-4000 objects
– 95-97 % object hit rate
– 1300-1400 req/sec
– 100 Mbit/s (Filled the pipe)

http://www.vg.no/


  

Performance

● Live test:
– Dual Opteron 2.4 GHz, 4GB RAM
– FreeBSD 6-Stable, accept filters
– www.vg.no Traffic, 3000-4000 objects
– 95-97 % object hit rate
– 1300-1400 req/sec
– 100 Mbit/s (Filled the pipe)
– 87% Idle CPU

http://www.vg.no/


  

Varnish

● BSD license

● http://varnish.projects.linpro.no

● Sponsored by Verdens Gang

● Volunteers and testers needed  ~juli'06


