

Varnish

- a server-side http cache

Poul-Henning Kamp

phk@FreeBSD.org

mailto:phk@FreeBSD.org

dictionary:Varnish

● tr. v. var·nished, var·nish·ing, var·nish·es

– To cover with varnish.

– To give a smooth and glossy finish to.

– To give a deceptively attractive appearance
to.

Varnish Cheat-Sheet

● Web-accelleration for slow CMS systems
● Narrow focus on server side speedup

– No FTP etc.
– Content provider features

● Modern Hardware/Software
– 64bit, large RAM, sendfile, accept filters
– Also runs on 32bit machines
– SMP/Multicore friendly architecture

RFC2616 on HTTP caches

Shared
HTTP
Cache

HTTP
Origin
Server

Private
HTTP
Cache

HTTP
Client

HTTP
Client

HTTP
Client

Server domain Client domain

RFC2616 and Varnish

Shared
HTTP
Cache

HTTP
Origin
Server

Private
HTTP
Cache

HTTP
Client

HTTP
Client

HTTP
Client

Server domain Client domain

Varnish
HTTP
cache

RFC2616 origin server

Client Cache Situation

● Origin servers are adversarial.
● Anything the origin server says is law.
● If in doubt: don't cache.
● Be transparent at any cost.
● If origin server does not reply: error.

Server Cache Situation

● Backend (origin server) is our friend.
● We can be responsible for modifying the

origin servers instructions.
– Change TTL, rewrite URLs etc.

● Whatever happens: protect the backend.
● If backend does not reply: do something!

CMS systems

● GET / HTTP/1.1

– Hang on, I need to look up a few hundred
things in my database and then do a lot of
editing with some badly written software.

● HEAD / HTTP/1.1

– Hang on, I need to look up a few hundred
things in my database and then do a lot of
editing with some badly written software, and
then I will throw the result away.

CMS systems are SLOW!

● Complex content generation process
● Single database prevents clustering
● Expensive software ditto.

● => Need for server side caching.
– Apache
– Squid
– $CALL

Apache as cache

● Not what Apache is built for.
● Not what Apache is good at.
● Square peg, round hole.

Squid is a cache...

● ...built for client side caching.
● Lots of unwanted functionality.

– Authentication.
– FTP

● 1980'ies software design.
● Fragile and buggy.
● Wrong configuration features.
● Wrong policy decisions.

$CALL

● Akamai will happily take your money.
● But you loose control.
● You're stuck with their service.

Enter Varnish...

● Built for server-side caching.
● 2006 software design:

– Multi-Processor / Multi-Core / Multi-Thread.
– Virtual Memory, shared memory.
– Sendfile, Accept filter.

● Content provider features:
– Instant URL invalidation.
– Full Policy Control.

Content Manager Features

● URL invalidation with no delay
– Regexp matching

● TTL control (via VCL)
● Load/Situation mitigation (via VCL)
● Shared Memory Log

– Fast special purpose log-tailers

OaM

● Cluster controller
– Invalidate URL on all caches instantly
– Change VCL on all caches simultaneously.
– Aggregate statistics

● Command Line Interface
– Remote access via ssh/mobile phone
– Interrogation/configuation/investigation

Performance Design

● Don't copy data if we can avoid it
– Avoid text-processing headers

● Convert Chunked encoding to Direct
● Also cache ”cannot be cached” info
● Maximize session usage

– Pass-through mode understands chunked
encoding etc.

– Pipe mode for weird stuff (selected by VCL)

Varnish Architecture

Cluster
Controller

Management
Process

Child/Cache
Process

ChildProcMgt

CmdLine

Initialization

VCL compiler

(Cmdline)

Storage/hashing

Log/Stats

Accept/Backend

Worker threads

Grim Reaper

C-compiler Shared object

CmdLine

Web-interface

CMS-interface

SMS-interface

CLI-interface

One binary program

Shared
Memory

logwriter
stats
ad-hoc

Varnish Config Language

● Simple domain specific language
– Compiled via C language to binary

● Transparantly!

– Dynamically loaded
– Multiple configs loaded concurrently

● Instant switch from one VCL to another.
– Can be done from VCL(!)

VCL example

 if (client.ip in 10.0.0.0/8) {
 pass;
 }

 if (req.url.host ~ "cnn.no$") {
 rewrite req.url.host ”cnn.no” ”vg.no”
 }

 if (!backend.up) {
 if (obj.exist) {
 set obj.ttl += 10m;
 deliver;
 }
 switch_config ”ohhshit”;
 }

VCL structure

Request VCL_RECV()

lookup

VCL_HIT() VCL_MISS()

fetch

VCL_RECV()

VCL_TIMEOUT()

discardprefetch

deliver

insert

error

pass/
pipe

Grim Reaper

Storage

● Storage methods are plugable
– Malloc

● Simple malloc(3)/free(3)

– File
● Mmap(2)'s one file

– Tar
● Loads tar(1) file with static objects

storage_file

● Uses a single file
● Most recently accessed/First fit allocation
● Mmap(2)'ed into process
● Use sendfile(2) if available
● Avoids filesystem namespace-lookup
● Not Persistent

– Avoids integrity check.

Logging

● Logging to shared memory
– No slowdown for real workload

● Daemons tailing shm generate ”real”
output:
– Apache format
– Custom format
– Realtime views

Statistics

● Stored in shared memory

● Programs can monitor & present data

Status

● All the ”technical” code is written
– Live 'smoke test' today with www.vg.no

● ”Political” code needs to be filled in
– Mostly VCL runtime parts.

● Profiling and performance tuning

http://www.vg.no/

Performance

● Lab test:
– Dual Opteron Dual Core, 4G, 1 disk
– FreeBSD 6-Stable (KSE threads)
– 100.000 Objects @ 8K
– 4 pipelined clients picking random objects
– 97% hitrate (due to object expiry)
– 200+ Mbit/s, 3000 req/sec.
– CPU load ~2.0

Performance

● Live test:
– Dual Opteron 2.4 GHz, 4GB RAM
– FreeBSD 6-Stable, accept filters
– www.vg.no Traffic, 3000-4000 objects
– 95-97 % object hit rate
– 1300-1400 req/sec
– 100 Mbit/s (Filled the pipe)

http://www.vg.no/

Performance

● Live test:
– Dual Opteron 2.4 GHz, 4GB RAM
– FreeBSD 6-Stable, accept filters
– www.vg.no Traffic, 3000-4000 objects
– 95-97 % object hit rate
– 1300-1400 req/sec
– 100 Mbit/s (Filled the pipe)
– 87% Idle CPU

http://www.vg.no/

Varnish

● BSD license

● http://varnish.projects.linpro.no

● Sponsored by Verdens Gang

● Volunteers and testers needed ~juli'06

